Background: Which fertilization method, between ICSI and IVF in split insemination treatments, has the highest clinical efficiency in producing clinically usable blastocyst?
Methods: 211 infertile couples underwent split insemination treatments for a non-severe male factor. 1300 metaphase II (MII) oocytes were inseminated by conventional IVF and 1302 MII oocytes were micro-injected with the same partner's semen. Embryo development until blastocyst stage on day V and clinical outcomes were valuated trough conventional key performance indicators (KPI), and new KPIs such as blastocyst rate per used MII oocytes and the number of MII oocytes to produce one clinically usable blastocyst from ICSI and IVF procedures.
Purpose: We developed and applied a universal strategy for preimplantation genetic testing for all cystic fibrosis gene mutations (PGT-CF) based on next-generation sequencing (NGS).
Methods: A molecular protocol was designed to diagnose all CF mutations at preimplantation stage. The detection of CF mutations was performed by direct gene sequencing and linkage strategy testing 38 specific SNPs located upstream and inside the gene for PGT-CF.
Purpose: We developed and applied a universal strategy for preimplantation genetic testing for all cystic fibrosis gene mutations (PGT-CF) based on next-generation sequencing (NGS).
Methods: A molecular protocol was designed to diagnose all CF mutations at preimplantation stage. The detection of CF mutations was performed by direct gene sequencing and linkage strategy testing 38 specific SNPs located upstream and inside the gene for PGT-CF.
Purpose: In a preimplantation genetic diagnosis for aneuploidy (PGD-A) program, the more embryos available for biopsy, consequently increases the chances of obtaining euploid embryos to transfer. The aim was to increase the number of viable euploid blastocysts in patients undergoing PGD-A using fresh oocytes together with previously accumulated vitrified oocytes.
Methods: Sixty-nine patients with normal ovarian reserve underwent PGD-A for repeated implantation failure or recurrent pregnancy loss indication.
Purpose: Embryo kinetics analysis is an emerging tool for selecting embryo(s) for transfer. The aim of the present study was to determine morphokinetic parameters easily usable in the laboratory and predictive of embryo development and, most importantly, of embryo competence in producing a clinical pregnancy after day 5 transfer.
Methods: A retrospective time-lapse monitoring analysis of morphokinetic parameters for 72 fully implanted embryos (group A) were compared to 106 non-implanted embryos (group B), and to 66 embryos with arrested development from the same pool of group A.