An endothelial-lined blood vessel model is obtained in a PDMS (Polydimethylsiloxane) microfluidic system, where vascular endothelial cells are grown under physiological shear stress, allowing -like maturation. This experimental model is employed for enhanced drug delivery studies, aimed at characterising the increase in endothelial permeability upon microbubble-enhanced ultrasound-induced (USMB) cavitation. We developed a multi-step protocol to couple the optical and the acoustic set-ups, thanks to a 3D-printed insonation chamber, provided with direct optical access and a support for the US transducer.
View Article and Find Full Text PDFImmunotherapy is a powerful therapeutic approach able to re-educate the immune system to fight cancer. A key player in this process is the tumor microenvironment (TME), which is a dynamic entity characterized by a complex array of tumor and stromal cells as well as immune cell populations trafficking to the tumor site through the endothelial barrier. Recapitulating these multifaceted dynamics is critical for studying the intimate interactions between cancer and the immune system and to assess the efficacy of emerging immunotherapies, such as immune checkpoint inhibitors (ICIs) and adoptive cell-based products.
View Article and Find Full Text PDFTargeting pharmaceuticals through the endothelial barrier is crucial for drug delivery. In this context, cavitation-assisted permeation shows promise for effective and reversible opening of intercellular junctions. A vessel-on-a-chip is exploited to investigate and quantify the effect of ultrasound-excited microbubbles-stable cavitation-on endothelial integrity.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
August 2018
Traditional drug delivery systems, where pharmaceutical agents are conveyed to the target tissue through the blood circulation, suffer of poor therapeutic efficiency and limited selectivity largely due to the low permeability of the highly specialised biological interface represented by the endothelial layer. Examples concern cancer therapeutics or degenerative disorders where drug delivery is inhibited by the blood-brain barrier (BBB). Microbubbles injected into the bloodstream undergo volume oscillations under localised ultrasound irradiation and possibly collapse near the site of interest, with no effect on the rest of the endothelium.
View Article and Find Full Text PDFA novel design for the classical microfluidic device known as T-junction is proposed with the purpose of obtaining a simultaneous measurement of the in-plane velocity components in two orthogonal planes. A crucial feature of the proposed configuration is that all three velocity components are available along the intersection of the two planes. A dedicated optical set-up is developed to convey the two simultaneous views from the orthogonal planes into the sensor of a single camera, where a compound image is formed showing on either half one of the two views.
View Article and Find Full Text PDFMicrobiologyopen
February 2018
The dynamics of swimming microorganisms is strongly affected by solid-liquid and air-liquid interfaces. In this paper, we characterize the motion of both single bacteria and microcolonies at an air-liquid interface. Both of them follow circular trajectories.
View Article and Find Full Text PDF