Mammalian olfactory sensory neurons (OSNs) generate an odorant-induced response by sequentially activating two ion channels, which are in their ciliary membranes. First, a cationic, Ca-permeable cyclic nucleotide-gated channel is opened following odorant stimulation via a G protein-coupled transduction cascade and an ensuing rise in cAMP. Second, the increase in ciliary Ca opens the excitatory Ca-activated Cl channel TMEM16B, which carries most of the odorant-induced receptor current.
View Article and Find Full Text PDFThe COVID-19 pandemic brought attention to our limited understanding of human olfactory physiology. While the cellular composition of the human olfactory epithelium is similar to that of other vertebrates, its functional properties are largely unknown. We prepared acute slices of human olfactory epithelium from nasal biopsies and used the whole-cell patch-clamp technique to record electrical properties of cells.
View Article and Find Full Text PDFThe Ca2+-activated Cl¯ channel TMEM16B carries up to 90% of the transduction current evoked by odorant stimulation in olfactory sensory neurons and control the number of action potential firing and therefore the length of the train of action potentials. A loss of function approach revealed that TMEM16B is required for olfactory-driven behaviors such as tracking unfamiliar odors. Here, we used the electro-olfactogram (EOG) technique to investigate the contribution of TMEM16B to odorant transduction in the whole olfactory epithelium.
View Article and Find Full Text PDFBackground/aims: Quantitative and qualitative alterations in the sense of smell are well established symptoms of COVID-19. Some reports have shown that non-neuronal supporting (also named sustentacular) cells of the human olfactory epithelium co-express ACE2 and TMPRSS2 necessary for SARS-CoV-2 infection. In COVID-19, syncytia were found in many tissues but were not investigated in the olfactory epithelium.
View Article and Find Full Text PDFDegradation of the chondroitin sulfate proteoglycans of the extracellular matrix (ECM) by injections of the bacterial enzyme chondroitinase ABC (ChABC) in the basolateral amygdala (BLA) does not impair fear memory formation but accelerates its extinction and disrupts its reactivation. These observations suggest that the treatment might selectively interfere with the post-extinction features of neurons that mediate the reinstatement of fear. Here, we report that ChABC mice show regular fear memory and memory-driven c-fos activation and dendritic spine formation in the BLA.
View Article and Find Full Text PDF