Publications by authors named "Giorgia Fanelli"

Paediatric heart transplant is an established treatment for end stage heart failure in children, however patients have to commit to lifelong medical surveillance and adhere to daily immunosuppressants to minimise the risk of rejection. Compliance with immunosuppressants can be burdensome with their toxic side effects and need for frequent blood monitoring especially in children. Though the incidence of early rejection episodes has significantly improved overtime, the long-term allograft health and survival is determined by Cardiac Allograft Vasculopathy (CAV) which affects a vast number of post-transplant patients.

View Article and Find Full Text PDF

Retinal pigment epithelium (RPE) cell allotransplantation is seen as a possible solution to retinal diseases. However, the RPE-complement system triggered by the binding of collectin-11 (CL-11) is a potential barrier for RPE transplantation as the complement-mediated inflammatory response may promote T cell recognition. To address this, we investigated the role of CL-11 on T cell immuno-response.

View Article and Find Full Text PDF

Regenerative medicine aims to replace damaged tissues by stimulating endogenous tissue repair or by transplanting autologous or allogeneic cells. Due to their capacity to produce unlimited numbers of cells of a given cell type, pluripotent stem cells, whether of embryonic origin or induced via the reprogramming of somatic cells, are of considerable therapeutic interest in the regenerative medicine field. However, regardless of the cell type, host immune responses present a barrier to success.

View Article and Find Full Text PDF

Programmed cell death protein 1 (PD-1) is expressed on T cells upon T cell receptor (TCR) stimulation. PD-1 ligand 1 (PD-L1) is expressed in most tumor environments, and its binding to PD-1 on T cells drives them to apoptosis or into a regulatory phenotype. The fact that PD-L1 itself is also expressed on T cells upon activation has been largely neglected.

View Article and Find Full Text PDF

A novel coronavirus, SARS-CoV-2, has recently emerged in China and spread internationally, posing a health emergency to the global community. COVID-19 caused by SARS-CoV-2 is associated with an acute respiratory illness that varies from mild to the life-threatening acute respiratory distress syndrome (ARDS). The complement system is part of the innate immune arsenal against pathogens, in which many viruses can evade or employ to mediate cell entry.

View Article and Find Full Text PDF

Regulatory T cells (Tregs) are a subpopulation of CD4 T cells with a fundamental role in maintaining immune homeostasis and inhibiting unwanted immune responses using several different mechanisms. Recently, the intercellular transfer of molecules between Tregs and their target cells has been shown via trogocytosis and the release of small extracellular vesicles (sEVs). In this study, CD4CD25CD127 human Tregs were found to produce sEVs capable of inhibiting the proliferation of effector T cells (Teffs) in a dose dependent manner.

View Article and Find Full Text PDF

The physiological role of mesenchymal stem cells (MSCs) is to provide a source of cells to replace mesenchymal-derivatives in stromal tissues with high cell turnover or following stromal tissue damage to elicit repair. Human MSCs have been shown to suppress in vitro T-cell responses via a number of mechanisms including indoleamine 2,3-dioxygenase (IDO). This immunomodulatory capacity is likely to be related to their in vivo function in tissue repair where local, transient suppression of immune responses would benefit differentiation.

View Article and Find Full Text PDF

Regulatory T cells (Tregs) are important for the induction and maintenance of peripheral tolerance therefore, they are key in preventing excessive immune responses and autoimmunity. In the last decades, several reports have been focussed on understanding the biology of Tregs and their mechanisms of action. Preclinical studies have demonstrated the ability of Tregs to delay/prevent graft rejection and to control autoimmune responses following adoptive transfer .

View Article and Find Full Text PDF

Repair of tissue damaged during inflammatory processes is key to the return of local homeostasis and restoration of epithelial integrity. Here we describe CD161 regulatory T (T) cells as a distinct, highly suppressive population of T cells that mediate wound healing. These T cells were enriched in intestinal lamina propria, particularly in Crohn's disease.

View Article and Find Full Text PDF

The complement system is a dynamic subset of the innate immune system, playing roles in host defense, clearance of immune complexes and cell debris, and priming the adaptive immune response. Over the last 40 years our understanding of the complement system has evolved from identifying its presence and recognizing its role in the blood to now focusing on understanding the role of local complement synthesis in health and disease. In particular, the local synthesis of complement was found to have an involvement in mediating ischaemic injury, including following transplantation.

View Article and Find Full Text PDF

Regulatory T cells (Tregs) are essential in maintaining peripheral immunological tolerance by modulating several subsets of the immune system including monocytes. Under inflammatory conditions, monocytes migrate into the tissues, where they differentiate into dendritic cells or tissue-resident macrophages. As a result of their context-dependent plasticity, monocytes have been implicated in the development/progression of graft-vs-host disease (GvHD), autoimmune diseases and allograft rejection.

View Article and Find Full Text PDF

Age-related macular degeneration (AMD) is a major cause of blindness and is associated with complement dysregulation. The disease is a potential target for stem cell therapy but success is likely to be limited by the inflammatory response. We investigated the innate immune properties of human induced-pluripotent stem cell (iPSC)-derived RPE cells, particularly with regard to the complement pathway.

View Article and Find Full Text PDF

A novel subset of human regulatory B-cells has recently been described. They arise from within the transitional B-cell subpopulation and are characterised by the production of IL-10. They appear to be of significant importance in regulating T-cell immunity in vivo.

View Article and Find Full Text PDF

Immunosuppressive drugs in clinical transplantation are necessary to inhibit the immune response to donor antigens. Although they are effective in controlling acute rejection, they do not prevent long-term transplant loss from chronic rejection. In addition, immunosuppressive drugs have adverse side effects, including increased rate of infections and malignancies.

View Article and Find Full Text PDF

Psoriasis is a common T-cell-mediated skin disease with 2-3% prevalence worldwide. Psoriasis is considered to be an autoimmune disease, but the precise nature of the autoantigens triggering T-cell activation remains poorly understood. Here we find that two-thirds of patients with moderate-to-severe plaque psoriasis harbour CD4(+) and/or CD8(+) T cells specific for LL37, an antimicrobial peptide (AMP) overexpressed in psoriatic skin and reported to trigger activation of innate immune cells.

View Article and Find Full Text PDF

Exosomes are extracellular vesicles released by many cells of the body. These small vesicles play an important part in intercellular communication both in the local environment and systemically, facilitating in the transfer of proteins, cytokines as well as miRNA between cells. The observation that exosomes isolated from immune cells such as dendritic cells (DCs) modulate the immune response has paved the way for these structures to be considered as potential immunotherapeutic reagents.

View Article and Find Full Text PDF

Adoptive transfer of ex vivo expanded CD4(+)CD25(+)FOXP3(+) regulatory T cells is a successful therapy for autoimmune diseases and transplant rejection in experimental models. In man, equivalent manipulations in bone marrow transplant recipients appear safe, but questions regarding the stability of the transferred regulatory T cells during inflammation remain unresolved. In this study, protocols for the expansion of clinically useful numbers of functionally suppressive and stable human regulatory T cells were investigated.

View Article and Find Full Text PDF

Considerable evidence supports the prediction that CD25 is directly regulated by the forkhead transcription factor FOXP3. However, given that CD25 is normally upregulated in activated T cells, regardless of whether they express FOXP3, this issue has still to be definitively demonstrated. Here we describe that FOXP3, induced by CD28 signals in human CD4(+)CD25(-) T lymphocytes, synergizes with RelA on a regulatory region of Cd25 promoter to mediate the transcriptional activation of Cd25 gene.

View Article and Find Full Text PDF