Circular RNAs (circRNAs) are covalently closed RNAs that are present in all eukaryotes tested. Recent RNA sequencing (RNA-seq) analyses indicate that although generally less abundant than messenger RNAs (mRNAs), over 1.8 million circRNA isoforms exist in humans, much more than the number of currently known mRNA isoforms.
View Article and Find Full Text PDFAt least 53 mutations in the microtubule associated protein tau gene (MAPT) have been identified that cause frontotemporal dementia. 47 of these mutations are localized between exons 7 and 13. They could thus affect the formation of circular RNAs (circRNAs) from the MAPT gene that occurs through backsplicing from exon 12 to either exon 10 or exon 7.
View Article and Find Full Text PDFUnlabelled: At least 53 mutations in the microtubule associated protein tau gene (MAPT) have been identified that cause frontotemporal dementia. 47 of these mutations are localized between exons 7 and 13. They could thus affect the formation of circular RNAs (circRNAs) from the MAPT gene that occur through backsplicing from exon 12 to either exon 10 or exon 7.
View Article and Find Full Text PDFIntroduction: The molecular changes leading to Alzheimer's disease (AD) progression are poorly understood. A decisive factor in the disease occurs when neurofibrillary tangles (NFT) composed of microtubule associated protein tau (MAPT) form in the entorhinal cortex and then spread throughout the brain.
Methods: We therefore determined mRNA and circular RNA changes during AD progression, comparing Braak NFT stages I-VI.
Visual imprinting is a learning process whereby young animals come to prefer a visual stimulus after exposure to it (training). The intermediate medial mesopallium in the domestic chick forebrain is critical for visual imprinting and contributes to molecular regulation of memory formation. Criteria used to infer that a change following training is learning-related have been formulated and published.
View Article and Find Full Text PDFVisual imprinting is a learning process whereby young animals come to prefer a visual stimulus after exposure to it (training). The intermediate medial mesopallium (IMM) in the domestic chick forebrain is critical for visual imprinting and contributes to molecular regulation of memory formation. We investigated the role of micro-RNAs (miRNAs) in such regulation.
View Article and Find Full Text PDFVisual imprinting is a learning process through which young, visually naive animals come to recognize a visual stimulus by being exposed to it (training) and subsequently approach the stimulus in preference to others. A large body of evidence indicates that a restricted part of the forebrain, the intermediate medial mesopallium (IMM), is a memory region for visual imprinting in the domestic chick. Previous studies have shown learning-related up-regulation of several mitochondrial proteins in the IMM 24 h after training.
View Article and Find Full Text PDFFront Behav Neurosci
December 2015
The intermediate and medial mesopallium (IMM) of the domestic chick forebrain has previously been shown to be a memory system for visual imprinting. Learning-related changes occur in certain plasma membrane and mitochondrial proteins in the IMM. Two-dimensional gel electrophoresis/mass spectrometry has been employed to identify more comprehensively learning-related expression of proteins in the membrane-mitochondrial fraction of the IMM 24 h after training.
View Article and Find Full Text PDF