Studying how we explore the world in search of novelties is key to understand the mechanisms that can lead to new discoveries. Previous studies analyzed novelties in various exploration processes, defining them as the first appearance of an element. However, novelties can also be generated by combining what is already known.
View Article and Find Full Text PDFLeveraging the discrete skill and knowledge worker requirements of each occupation provided by O*NET, our empirical approach employs network-based tools from the Economic Complexity framework to characterize the US occupational network. This approach provides insights into the interplay between wages and the complexity or relatedness of the skill sets within each occupation, complementing conventional human capital frameworks. Our empirical strategy is threefold.
View Article and Find Full Text PDFA central role in shaping the experience of users online is played by recommendation algorithms. On the one hand they help retrieving content that best suits users taste, but on the other hand they may give rise to the so-called "filter bubble" effect, favoring the rise of polarization. In the present paper we study how a user-user collaborative-filtering algorithm affects the behavior of a group of agents repeatedly exposed to it.
View Article and Find Full Text PDFChess is a centuries-old game that continues to be widely played worldwide. Opening Theory is one of the pillars of chess and requires years of study to be mastered. In this paper, we use the games played in an online chess platform to exploit the "wisdom of the crowd" and answer questions traditionally tackled only by chess experts.
View Article and Find Full Text PDFBlockchains are among the most relevant emerging technologies of recent times and, according to many, they will have a central role in shaping the future of our society. Since the introduction of Bitcoin in 2009, the first notorious blockchain system bound to a cryptocurrency, the blockchain ecosystem has experienced a huge growth, driven by innovations both in conceptual and algorithmic terms, and in the creation of a large number of new cryptocoins. New blockchains and their associated cryptocoins, emerge mostly as the result of forking already existing projects.
View Article and Find Full Text PDFSocial media influence online activity by recommending to users content strongly correlated with what they have preferred in the past. In this way, they constrain users within filter bubbles strongly limiting their exposure to new or alternative content. We investigate this type of dynamics by considering a multistate voter model where, with a given probability λ, a user interacts with "personalized information," suggesting the opinion most frequently held in the past.
View Article and Find Full Text PDFWe consider restricted Boltzmann machine (RBMs) trained over an unstructured dataset made of blurred copies of definite but unavailable "archetypes" and we show that there exists a critical sample size beyond which the RBM can learn archetypes, namely the machine can successfully play as a generative model or as a classifier, according to the operational routine. In general, assessing a critical sample size (possibly in relation to the quality of the dataset) is still an open problem in machine learning. Here, restricting to the random theory, where shallow networks suffice and the "grandmother-cell" scenario is correct, we leverage the formal equivalence between RBMs and Hopfield networks, to obtain a phase diagram for both the neural architectures which highlights regions, in the space of the control parameters (i.
View Article and Find Full Text PDF