Publications by authors named "Giordanetto F"

Fibroblast growth factor receptor (FGFR) kinase inhibitors have been shown to be effective in the treatment of intrahepatic cholangiocarcinoma and other advanced solid tumors harboring alterations, but the toxicity of these drugs frequently leads to dose reduction or interruption of treatment such that maximum efficacy cannot be achieved. The most common adverse effects are hyperphosphatemia caused by FGFR1 inhibition and diarrhea due to FGFR4 inhibition, as current therapies are not selective among the FGFRs. Designing selective inhibitors has proved difficult with conventional approaches because the orthosteric sites of FGFR family members are observed to be highly similar in X-ray structures.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers developed RLY-2608, an allosteric inhibitor that selectively targets PIK3CA mutants, minimizing the impact on wild-type PI3Kα and reducing hyperglycemia risks.
  • * RLY-2608 showed effectiveness in reducing tumor growth in models and provided positive results in patients with advanced breast cancer, highlighting a significant step in targeted cancer therapy.
View Article and Find Full Text PDF

Protein tyrosine phosphatase SHP2 mediates RAS-driven MAPK signaling and has emerged in recent years as a target of interest in oncology, both for treating with a single agent and in combination with a KRAS inhibitor. We were drawn to the pharmacological potential of SHP2 inhibition, especially following the initial observation that drug-like compounds could bind an allosteric site and enforce a closed, inactive state of the enzyme. Here, we describe the identification and characterization of (formerly RLY-1971), a SHP2 inhibitor currently in clinical trials in combination with KRAS G12C inhibitor divarasib (GDC-6036) for the treatment of solid tumors driven by a KRAS G12C mutation.

View Article and Find Full Text PDF

Fragment-based drug discovery has led to six approved drugs, but the small sizes of the chemical fragments used in such methods typically result in only weak interactions between the fragment and its target molecule, which makes it challenging to experimentally determine the three-dimensional poses fragments assume in the bound state. One computational approach that could help address this difficulty is long-timescale molecular dynamics (MD) simulations, which have been used in retrospective studies to recover experimentally known binding poses of fragments. Here, we present the results of long-timescale MD simulations that we used to prospectively discover binding poses for two series of fragments in allosteric pockets on a difficult and important pharmaceutical target, protein tyrosine phosphatase 1b (PTP1b).

View Article and Find Full Text PDF

Thiazolidinedione PPARγ agonists such as rosiglitazone and pioglitazone are effective antidiabetic drugs, but side effects have limited their use. It has been posited that their positive antidiabetic effects are mainly mediated by the inhibition of the CDK5-mediated Ser273 phosphorylation of PPARγ, whereas the side effects are linked to classical PPARγ agonism. Thus compounds that inhibit PPARγ Ser273 phosphorylation but lack classical PPARγ agonism have been sought as safer antidiabetic therapies.

View Article and Find Full Text PDF

Intrinsically disordered proteins (IDPs) are implicated in many human diseases. They have generally not been amenable to conventional structure-based drug design, however, because their intrinsic conformational variability has precluded an atomic-level understanding of their binding to small molecules. Here we present long-time-scale, atomic-level molecular dynamics (MD) simulations of monomeric α-synuclein (an IDP whose aggregation is associated with Parkinson's disease) binding the small-molecule drug fasudil in which the observed protein-ligand interactions were found to be in good agreement with previously reported NMR chemical shift data.

View Article and Find Full Text PDF

Background And Aims: The potassium channel Kv1.3 is a potentially attractive therapeutic target in T cell-mediated inflammatory diseases, as the activity of antigen-activated T cells is selectively impeded by Kv1.3 inhibition.

View Article and Find Full Text PDF

A "fragment hit", a molecule of low molecular weight that has been validated to bind to a target protein, can be an effective chemical starting point for a drug discovery project. Our ability to find and progress fragment hits could potentially be improved by enhancing our understanding of their binding properties, which to date has largely been based on tacit knowledge and reports from individual projects. In the work reported here, we systematically analyzed the molecular and binding properties of fragment hits using 489 published protein-fragment complexes.

View Article and Find Full Text PDF

Antibiotic resistance is posing a continuous threat to global public health and represents a huge burden for society as a whole. In the past decade, the interference with bacterial quorum sensing (QS) (i.e.

View Article and Find Full Text PDF

Resistance to antibiotics is an increasingly serious threat to global public health and its management translates to significant health care costs. The validation of new Gram-negative antibacterial targets as sources for potential new antibiotics remains a challenge for all the scientists working in this field. The interference with bacterial Quorum Sensing (QS) mechanisms represents a potentially interesting approach to control bacterial growth and pursue the next generation of antimicrobials.

View Article and Find Full Text PDF

A lead generation campaign identified indole-based sPLA-X inhibitors with a promising selectivity profile against other sPLA isoforms. Further optimization of sPLA selectivity and metabolic stability resulted in the design of (-)-, a novel, potent, and selective sPLA-X inhibitor with an exquisite pharmacokinetic profile characterized by high absorption and low clearance, and low toxicological risk. Compound (-)- was tested in an ApoE murine model of atherosclerosis to evaluate the effect of reversible, pharmacological sPLA-X inhibition on atherosclerosis development.

View Article and Find Full Text PDF

In order to assess the potential of sPLA-X as a therapeutic target for atherosclerosis, novel sPLA inhibitors with improved type X selectivity are required. To achieve the objective of identifying such compounds, we embarked on a lead generation effort that resulted in the identification of a novel series of indole-2-carboxamides as selective sPLA2-X inhibitors with excellent potential for further optimization.

View Article and Find Full Text PDF

Recently we identified cycloguanil-like dihydrotriazine derivatives, which provided host-factor directed antiviral activity against influenza viruses and respiratory syncytial virus (RSV), by targeting the human dihydrofolate reductase (hDHFR) enzyme. In this context we deemed interesting to further investigate the structure activity relationship (SAR) of our first series of cycloguanil-like dihydrotriazines, designing two novel azaspiro dihydrotriazine scaffolds. The present study allowed the exploration of the potential chemical space, around these new scaffolds, that are well tolerated for maintaining the antiviral effect by means of interaction with the hDHFR enzyme.

View Article and Find Full Text PDF

Effective therapies for multiple sclerosis (MS) are still missing. This neurological disease affects more than 2.5 million people worldwide.

View Article and Find Full Text PDF

In modern cancer therapy, the use of small organic molecules against receptor tyrosine kinases (RTKs) has been shown to be a valuable strategy. The association of cancer cells with dysregulated signaling pathways linked to RTKs represents a key element in targeted cancer therapies. The tyrosine kinase mast/stem cell growth factor receptor KIT is an example of a clinically relevant RTK.

View Article and Find Full Text PDF

Design strategies centered on intramolecular hydrogen bonds are sometime used in drug discovery, but their general applicability has not been addressed beyond scattered examples or circumstantial evidence. A total of 1053 matched molecular pairs where only one of the two molecules is able to form an intramolecular hydrogen bond via monatomic transformations have been identified across the ChEMBL database. These pairs were used to investigate the effect of intramolecular hydrogen bonds on biological activity.

View Article and Find Full Text PDF

Phosphodiesterase 4 (PDE4) inhibitors have attractive therapeutic potential in respiratory, inflammatory, metabolic and CNS disorders. The present work details the design, chemical exploration and biological profile of a novel PDE4 inhibitor chemotype. A diazepinone ring was identified as an under-represented heterocyclic system fulfilling a set of PDE4 structure-based design hypotheses.

View Article and Find Full Text PDF

Expedited structure-based optimization of the initial fragment hit led to the design of ()- (AZD2716) a novel, potent secreted phospholipase A (sPLA) inhibitor with excellent preclinical pharmacokinetic properties across species, clear efficacy, and minimized safety risk. Based on accumulated profiling data, ()- was selected as a clinical candidate for the treatment of coronary artery disease.

View Article and Find Full Text PDF

The exploration of innovative chemical space is a critical step in the early phases of drug discovery. Bis-spirocyclic frameworks occur in natural products and other biologically relevant metabolites and show attractive features, such as molecular compactness, structural complexity, and three-dimensional character. A concise approach to the synthesis of bis-spirocyclic-based compound libraries starting from readily available commercial reagents and robust chemical transformations has been developed.

View Article and Find Full Text PDF

In total, 47,500,000 people worldwide are affected by dementia and this number is estimated to double by 2030 and triple within 2050 resulting in a huge burden on public health. Alzheimer's disease (AD), a progressive neurodegenerative disorder, is the most common cause of dementia, accounting for 60-70% of all the cases. The cause of AD is still poorly understood but several brain abnormalities (e.

View Article and Find Full Text PDF

High-throughput screening (HTS) represents a major cornerstone of drug discovery. The availability of an innovative, relevant and high-quality compound collection to be screened often dictates the final fate of a drug discovery campaign. Given that the chemical space to be sampled in research programs is practically infinite and sparsely populated, significant efforts and resources need to be invested in the generation and maintenance of a competitive compound collection.

View Article and Find Full Text PDF

The introduction of silicon in biologically-relevant molecules represents an interesting medicinal chemistry tactic. Its use is mainly confined to the fine-tuning of specific molecular properties and organosilicon compounds are underrepresented in typical screening libraries. As part of the European Lead Factory efforts to generate novel, drug discovery-relevant chemical matter, the design and synthesis of 1,1-disubstituted-1-silacycloalkane-based compound libraries is described.

View Article and Find Full Text PDF

A natural product-inspired synthesis of a compound collection embodying the tetrahydroindolo[2,3-a]quinolizine scaffold was established with a five step synthesis route. An imino-Diels-Alder reaction between Danishefsky's diene and the iminoesters derived from tryptamines was used as a key reaction. Reductive amination of the ketone function and amide synthesis with the carboxylic acid derived from the ethyl ester, were used to decorate the core scaffold.

View Article and Find Full Text PDF

An efficient synthetic access to two amino-oxazoline compound libraries was developed employing the branching cascades approach. A common precursor, that is, chromonylidene β-ketoester was transformed into two different ring-systems, that is, the pyridine and the benzopyrane substituted hydroxyphenones. In further two steps, the ketone moiety in two ring-systems was transformed into an amino-oxazoline ring.

View Article and Find Full Text PDF

Ebola viruses are extremely virulent and highly transmissible. They are responsible for sporadic outbreaks of severe hemorrhagic fevers with human mortality rates of up to 90%. No prophylactic or therapeutic treatments in the form of vaccine, biologicals or small molecule, currently exist.

View Article and Find Full Text PDF