Photosynthetic hydrogen generation by cobalt(II) tris(2-pyridylmethyl)amine (TPMA) complexes is mainly limited by protonation kinetics and decomposition routes involving demetallation. In the present work we have explored the effects of both proton shuttles and improved rigidity on the catalytic ability of cobalt(II) TPMA complexes. Remarkably, we demonstrate that, while a small enhancement in the catalytic performance is attained in a rigid cage structure, the introduction of ammonium groups as proton transfer relays in close proximity to the cobalt center allows to reach a 4-fold increase in the quantum efficiency of H formation, and a surprising 22-fold gain in the maximum turnover number, at low catalyst concentration.
View Article and Find Full Text PDF