Publications by authors named "Gioia Alvino"

IUGR (intrauterine growth restriction) increases the incidence of perinatal complications and, although several placental transport functions have been shown to be altered in pregnancies complicated by IUGR, the mechanism behind it is not well understood. The aim of the present study was to investigate factors in maternal and cord blood plasma from normal and IUGR-complicated pregnancies associated with the body weight of newborns. At the time of Caesarean section, 24 women with IUGR pregnancies were compared with a group of 30 normal controls with AGA (appropriate gestational age) fetuses who were studied at Caesarean section, which took place 5 weeks later than IUGR pregnancies, and also to a group of 25 non-delivered gestational age-matched control pregnant women (AGA-35wk).

View Article and Find Full Text PDF

Long chain polyunsaturated fatty acids are essential nutrients for a healthy diet. The different kinds consumed by the mother during gestation and lactation may influence pregnancy, fetal and also neonatal outcome. The amount of fatty acids transferred from mother to fetus depends not only on maternal metabolism but also on placental function, i.

View Article and Find Full Text PDF

The aim of this study was to evaluate maternal and fetal lipid profile in intrauterine growth restriction (IUGR) pregnancies with and without preeclampsia (PE). Thirteen normal pregnancies studied during the third trimester (control M) and 29 at elective cesarean section (control CS) were compared with 18 pregnancies complicated by IUGR (IUGR only) and with seven pregnancies complicated by both IUGR and PE (IUGR-PE). Total plasma fatty acids, triglycerides, cholesterol, and nonesterified fatty acids (NEFA) were determined in maternal and fetal plasma.

View Article and Find Full Text PDF

Objective: Neonates of women with gestational diabetes mellitus (GDM) have reduced levels of arachidonic acid (AA) (20:4 n-6) and docosahexaenoic acid (DHA) (22:6 n-3). To assess whether this is the result of impaired placental transfer or endogenous fetal metabolism, fatty acids in umbilical venous and arterial plasma were analyzed in neonates of GDM women.

Research Design And Methods: Fatty acids were analyzed by gas chromatography in the plasma of 15 subjects with GDM and 30 healthy control subjects undergoing elective cesarean section and in vein and artery cord blood collected separately.

View Article and Find Full Text PDF

Among other factors, fetal growth requires maternal supply of cholesterol. Cellular cholesterol uptake is mainly mediated by the LDL receptor (LDL-R) and the scavenger receptor family. We hypothesized that expression levels of key receptors of these families were regulated differently in placentas from IUGR pregnancies with varying degrees of severity.

View Article and Find Full Text PDF

Intrauterine growth restriction (IUGR) is associated with reduced placental supply of nutrients to the fetus. Lipoprotein lipase (LPL) mediates the hydrolysis of triglycerides from maternal lipoproteins to obtain fatty acids. Here, we tested the hypothesis that placental LPL gene expression level is altered in pregnancies complicated by IUGR.

View Article and Find Full Text PDF

Knowledge of fetal nutrient supply has greatly increased in the last decade due to the availability of fetal blood samples obtained under relatively steady-state conditions. These studies, together with studies utilizing stable isotope methodologies, have clarified some aspects of the supply of the major nutrients for the fetus such as glucose, amino acids and fatty acids. At the same time, the relevance of intrauterine growth has been recognized not only for the well-being of the neonate and child, but also for later health in adulthood.

View Article and Find Full Text PDF

Fetuses with intrauterine growth restriction (IUGR) are at increased risk of death and disease during neonatal, pediatric, and adult life. Postnatal deficits in essential fatty acids have been associated with the neural and vascular complications of premature neonates. We studied whether fetal-maternal fatty acid relationships are already impaired in utero in IUGR fetuses.

View Article and Find Full Text PDF