Publications by authors named "Ginger S Withers"

The etiology of necrotizing enterocolitis (NEC) is not known. Alterations in gut microbiome, mucosal barrier function, immune cell activation, and blood flow are characterized events in its development, with stress as a contributing factor. The hormone corticotropin-releasing factor (CRF) is a key mediator of stress responses and influences these aforementioned processes.

View Article and Find Full Text PDF

Extensive branching creates the complex dendritic arbor of mammalian CNS neurons but capturing the complete process of branch formation with time-lapse recordings has been challenging. Here, we report that application of BMP7 to cultured hippocampal neurons accelerated dendritic growth sufficiently to document branches forming in less than 20 h via frequent time-lapse imaging (10-min intervals). In these recordings, most branches emerged as collateral sprouts from the shaft of a parent branch.

View Article and Find Full Text PDF

Astroglia play key roles in the development of neurons, ranging from regulating neuron survival to promoting synapse formation, yet basic questions remain about whether astrocytes might be involved in forming the dendritic arbor. Here, we used cultured hippocampal neurons as a simple in vitro model that allowed dendritic growth and geometry to be analyzed quantitatively under conditions where the extent of interactions between neurons and astrocytes varied. When astroglia were proximal to neurons, dendrites and dendritic filopodia oriented toward them, but the general presence of astroglia significantly reduced overall dendrite growth.

View Article and Find Full Text PDF

Bill Greenough's work provides a framework for thinking about synaptogenesis not only as a key step in the initial wiring of neural systems according to a species typical plan (i.e., experience-expectant development), but also as a mechanism for storing information based an individual's unique experience over its lifetime (i.

View Article and Find Full Text PDF

Bill Greenough's work on the cell biology of information storage suggests that we cannot understand the mechanism of long-term memory without understanding the series of cellular transactions that drive coordinated structural changes in neurons, glia, and blood vessels. Here, we show that after 4 days of differential housing, neuropil of EC cortex has expanded significantly, but the vasculature has not, resulting in a dilution of the blood supply. Significant growth of neurons and astrocytes has been reported within this time period, suggesting expression of synaptic plasticity might involve temporally coordinated genomic responses by both neurons and glia.

View Article and Find Full Text PDF

Background: Dendrites differ from axons in patterns of growth and development, as well as in morphology. Given that microtubules are key structural elements in cells, we assessed patterns of microtubule stability and polymerization during hippocampal neuron development in vitro to determine if these aspects of microtubule organization could distinguish axons from dendrites.

Results: Quantitative ratiometric immunocytochemistry identified significant differences in microtubule stability between axons and dendrites.

View Article and Find Full Text PDF

All members of the solitary bee species Osmia lignaria (the orchard bee) forage upon emergence from their natal nest cell. Conversely, in the honey bee, days-to-weeks of socially regulated behavioral development precede the onset of foraging. The social honey bee's behavioral transition to foraging is accompanied by neuroanatomical changes in the mushroom bodies, a region of the insect brain implicated in learning.

View Article and Find Full Text PDF

At the leading edge of a growing axon, the growth cone determines the path the axon takes and also plays a role in the formation of branches, decisions that are regulated by a complex array of chemical signals. Here, we used microfabrication technology to determine whether differences in substrate geometry, independent of changes in substrate chemistry, can modulate growth cone motility and branching, by patterning a polylysine grid of narrow (2 or 5 microm wide) intersecting lines. The shape of the intersections varied from circular nodes 15 microm in diameter to simple crossed lines (nodeless intersections).

View Article and Find Full Text PDF

The ability to control the placement of cells and the assembly of networks in vitro has tremendous potential for understanding the regulation of development as well as for generating artificial tissues. To date, most engineering tools that can place materials with precision are not compatible with the requirements of living cells, and so approaches to tissue engineering have focused on patterning substrates as a way of controlling cell growth rather than patterning cells directly. In this issue of Biochemical Journal, however, Eagles et al.

View Article and Find Full Text PDF

Millions of children are exposed to low levels of environmental neurotoxicants as their brains are developing. Conventional laboratory methods of neurotoxicology can detect maldevelopment of brain structure but are not designed to detect maldevelopment of the brain's capacity for plasticity that could impair learning throughout life. The environmental complexity (EC) paradigm has become classic for demonstrating the modifications in brain structure that occur in response to experience and thus provides a set of indices for plasticity in the healthy brain.

View Article and Find Full Text PDF