Publications by authors named "Ginger Ku"

Calorie restriction (CR) remains the most robust metabolic intervention to extend lifespan and improve healthspan in several species. Using global and targeted mass spectrometry-based metabolomics approaches, here we show that chronic CR prevents age-related changes in specific metabolic signatures. Global metabolomic analysis using ultra-performance liquid chromatography-tandem mass spectrometry detected more than 7,000 metabolites in sera from ad-libitum-fed young, aged, and aged C57BL/6 mice maintained on 40 % CR.

View Article and Find Full Text PDF

Here we report a novel method for the manipulation and concentration of Aβ amyloid fibrils, implicated in Alzheimer's disease, using DC insulating gradient dielectrophoresis (DC-iGDEP). Fibril enrichment was found to be ∼400%. Simulations suggest that capture of the full range of amyloid protein aggregates is possible with optimized device design.

View Article and Find Full Text PDF

The separation and detection of individual amyloid beta (Aβ) aggregates by capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) was demonstrated. Samples were prepared with either Aβ (1-40) or Aβ (1-42) peptides and were characterized by CE with ultraviolet (UV) absorbance detection and transmission electron microscopy (TEM). Using thioflavin T (ThT) in the electrophoresis buffer, electrophoresis of aggregate-containing samples (5.

View Article and Find Full Text PDF

A method based on capillary electrophoresis (CE) with UV absorbance detection is presented to characterize synthetic amyloid beta (Aβ) peptide preparations at different aggregation states. Aggregation of Aβ (1-40) and Aβ (1-42) is closely linked to Alzheimer's disease (AD), and studying how Aβ peptides self-assemble to form aggregates is the focus of intense research. Developing methods capable of identifying, characterizing and quantifying a wide range of Aβ species from monomers to fully formed fibrils is critical for AD research and is a major analytical challenge.

View Article and Find Full Text PDF

Adipose tissue contains a heterogeneous population of mature adipocytes, endothelial cells, immune cells, pericytes, and preadipocytic stromal/stem cells. To date, a majority of proteomic analyses have focused on intact adipose tissue or isolated adipose stromal/stem cells in vitro. In this study, human subcutaneous adipose tissue from multiple depots (arm and abdomen) obtained from female donors was separated into populations of stromal vascular fraction cells and mature adipocytes.

View Article and Find Full Text PDF

Proteomics refers to the analysis of expression, localization, functions, posttranslational modifications, and interactions of proteins expressed by a genome at a specific condition and at a specific time. Mass spectrometry (MS)-based proteomic methods have emerged as a key technology for unbiased systematic and high-throughput identification and quantification of complex protein mixtures. These methods have the potential to reveal unknown and novel changes in protein interactions and assemblies that regulate cellular and physiological processes.

View Article and Find Full Text PDF

An ethanolic extract of Artemisia dracunculus L. (PMI 5011) has been observed to decrease glucose and insulin levels in animal models and enhance cellular signaling in cultured cells. To determine the mechanism of action of PMI-5011, we have measured changes in protein expression in human primary skeletal muscle culture (HSMC) from subjects with Type 2 diabetes.

View Article and Find Full Text PDF