RUT-C30 was cultivated on differentially pretreated rice straw and pure cellulose as a carbon source/inducer for cellulase production, and the enzymes were evaluated for hydrolysis of sequential acid and alkali pretreated rice straw. Growth on pretreated rice straw enhanced protein secretion and cellulase activities compared to pure cellulose as a carbon source. The yield of cellulolytic enzymes was higher for alkali pretreated rice straw (ALP-RS), while HO-treated (HP-RS) could not induce cellulases to a larger level compared to pure cellulose.
View Article and Find Full Text PDFBackground And Aims: Preoxygenation is supplementation of 100% oxygen prior to induction of general anaesthesia to increase the body's oxygen stores. Efficacy of preoxygenation can be increased by optimising fresh gas flow (FGF) rate and pattern of breathing.
Methods: Based on pattern of breathing-Tidal Volume Breathing (TVB) or Deep Breathing (DB) and FGF-10 L/min or 15 L/min-100 subjects of the American Society of Anesthesiologists physical status I/II posted for elective surgery were recruited and randomised into four groups: T10 - TVB with 10 L/min; D10 - DB with 10 L/min; T15 - TVB with 15 L/min; and D15 - DB with 15 L/min.
Several tonnes of shellfish wastes are generated globally due to the mass consumption of shellfish meat from crustaceans like prawn, shrimp, lobster, crab, Antarctic krill, etc. These shellfish wastes are a reservoir of valuable by-products like chitin, protein, calcium carbonate, and pigments. In the present scenario, these wastes are treated chemically to recover chitin by the chitin and chitosan industries, using hazardous chemicals like HCl and NaOH.
View Article and Find Full Text PDFMono alkyl fatty acid ester or methyl ethyl esters (biodiesel) are the promising alternative for fossil fuel or petroleum derived diesel with similar properties and could reduce the carbon foot print and the greenhouse gas emissions. Biodiesel can be produced from renewable and sustainable feedstocks like plant derived oils, and it is biodegradable and non-toxic to the ecosystem. The process for the biodiesel production is either through traditional chemical catalysts (Acid or Alkali Transesterification) or enzyme mediated transesterification, but as enzymes are natural catalysts with environmentally friendly working conditions, the process with enzymes are proposed to overcome the drawbacks of chemical synthesis.
View Article and Find Full Text PDFSilver nanocrystals have been successfully fabricated by the bioreduction route using the ethanolic extract of (neem) leaves as the reducing and capping agent without solvent interference. The silver nanocrystals were grown in a single-step method, without the influence of external energy or surfactants, and at room temperature. The nanoparticles were prepared from different ratios of silver ions to reducing agent molecules and were characterized by UV-vis spectroscopy and transmission electron microscopy (TEM).
View Article and Find Full Text PDFAmong the seafood used globally, shellfish consumption is in great demand. The utilization of these shellfish such as prawn/shrimp has opened a new market for the utilization of the shellfish wastes. Considering the trends on the production of wealth from wastes, shrimp shell wastes seem an important resource for the generation of high value products when processed on the principles of a biorefinery.
View Article and Find Full Text PDFChitin is the second most widely found natural polymer next to cellulose. Chitinases degrade the insoluble chitin to bioactive chitooligomers and monomers for various industrial applications. Based on their function, these enzymes act as biocontrol agents against pathogenic fungi and invasive pests compared with conventional chemical fungicides and insecticides.
View Article and Find Full Text PDFMercury impacts the function and development of the central nervous system in both humans and wildlife by being a potent neurotoxin. Microbial bioremediation is an important means of remediation of mercury-contaminated soil. The rhizospheric Photobacterium halotolerans strain MELD1 was isolated from mercury and dioxin contaminated site from Tainan, Taiwan.
View Article and Find Full Text PDFHere, we present the whole-genome sequence of Photobacterium halotolerans strain, MELD1, isolated from the roots of a terrestrial plant Phragmites australis grown in soil heavily contaminated with mercury and dioxin. The genome provides further insight into the adaptation of bacteria to the toxic environment from where it was isolated.
View Article and Find Full Text PDFThough heavy metal such as mercury is toxic to plants and microorganisms, the synergistic activity between them may offer benefit for surviving. In this study, a mercury-reducing bacterium, Photobacterium spp. strain MELD1, with an MIC of 33 mg x kg(-1) mercury was isolated from a severely mercury and dioxin contaminated rhizosphere soil of reed (Phragmites australis).
View Article and Find Full Text PDFAspergillus unguis NII-08123, a filamentous fungus isolated from soil, was found to produce β-glucosidase (BGL) activity with high glucose tolerance. Cultivation of the fungus in different carbon sources resulted in the secretion of different isoforms of the enzyme. A low molecular weight isoform, which retained ~60 % activity in the presence of 1.
View Article and Find Full Text PDFIn this work, gut microbes from the macrotermitine termite Odontotermes formosanus the cellulolytic Bacillus and fermentative Clostridium were studied in batch experiments using different carbon substrates to bio-mimic the termite gut for hydrogen production. Their fungus comb aging and the in vitro lignocellulosic degradation of the mango tree substrates by the synergistic interaction of Bacillus, Clostridium and Termitomyces were detected by Solid-state NMR. From the results, Bacillus species acted as a mutualist, by initiating an anaerobic environment for the growth of Clostridium, for bio-hydrogen production and the presence of Termitomyces enhanced the lignocellulosic degradation of substrates in vitro and in vivo.
View Article and Find Full Text PDFThe microbial communities harbored in the gut and fungus comb of the fungus-growing termite Odontotermes formosanus were analyzed by both culture-dependent and culture-independent methods to better understand the community structure of their microflora. The microorganisms detected by denaturing gradient gel electrophoresis (DGGE), clonal selection, and culture-dependent methods were hypothesized to contribute to cellulose-hemicellulose hydrolysis, gut fermentation, nutrient production, the breakdown of the fungus comb and the initiation of the growth of the symbiotic fungus Termitomyces. The predominant bacterial cultivars isolated by the cultural approach belonged to the genus Bacillus (Phylum Firmicutes).
View Article and Find Full Text PDF