Some reports in the literature show the advantages of fluoride-containing apatite ceramics over hydroxyapatite (HAP), at least in some aspects. While HAP has been used extensively in the treatment of bone defects, fluoridated apatite has hardly been tested in vivo. In order to verify the biological properties of fluoride-doped apatite and to assess its therapeutic potential, we synthesized fluorapatite (FAP) and applied it as a filling in bone defects of experimental animals (rabbits).
View Article and Find Full Text PDFChronic wounds, among others, are mainly characterized by prolonged inflammation associated with the overproduction of reactive oxygen species and pro-inflammatory cytokines by immune cells. As a consequence, this phenomenon hinders or even precludes the regeneration process. It is known that biomaterials composed of biopolymers can significantly promote the process of wound healing and regeneration.
View Article and Find Full Text PDFThe number of bone fractures and cracks requiring surgical interventions increases every year; hence, there is a huge need to develop new potential bone scaffolds for bone regeneration. The goal of this study was to gain knowledge about the basic properties of novel curdlan/whey protein isolate/hydroxyapatite biomaterials in the context of their use in bone tissue engineering. The purpose of this research was also to determine whether the concentration of whey protein isolate in scaffolds has an influence on their properties.
View Article and Find Full Text PDFOsteochondral defects remain a huge problem in medicine today. Biomimetic bi- or multi-phasic scaffolds constitute a very promising alternative to osteochondral autografts and allografts. In this study, a new curdlan-based scaffold was designed for osteochondral tissue engineering applications.
View Article and Find Full Text PDFThis study aimed to develop, characterize, and evaluate antibacterial and cytotoxic properties of novel fullerene derivative composed of C fullerenol and standard aminoglycoside antibiotic-gentamicin (C fullerenol-gentamicin conjugate). The successful introduction of gentamicin to fullerenol was confirmed by X-ray photoelectron spectroscopy which together with thermogravimetric and spectroscopic analysis revealing the formula of the composition as C(OH)(GLYMO)(Gentamicin). The dynamic light scattering (DLS) revealed that conjugate possessed ability to form agglomerates in water (size around 115 nm), while Zeta potential measurements demonstrated that such agglomerates possessed neutral character.
View Article and Find Full Text PDFThis study aimed to evaluate the phenolic profile and biological activity of the extracts from the leaves and fruits of and . Considering that miscellaneous species of are thought to be healing in traditional Asian medicine, we assumed that this uninvestigated species may reveal significant therapeutic properties. Here, we report the simultaneous assessment of chemical composition as well as biological activities (antioxidant, anti-inflammatory, antibacterial, and cytotoxic properties) of tested species.
View Article and Find Full Text PDFGuided tissue regeneration and guided bone regeneration membranes are some of the most common products used for bone regeneration in periodontal dentistry. The main disadvantage of commercially available membranes is their lack of bone cell stimulation and easy bacterial colonization. The aim of this work was to design and fabricate a new membrane construct composed of electrospun poly (D,L-lactic acid)/poly (lactic-co-glycolic acid) fibers sonocoated with layers of nanoparticles with specific properties, i.
View Article and Find Full Text PDFThe methods of fighting cancer are far from ideal, therefore it is necessary to search for innovative and effective drugs. In our work, we present pyrazole derivatives and their modifications with polymer microspheres as potential anticancer agents. Molecular and crystal structures of pyrazole derivatives were determined an X-ray analysis and characterized by theoretical calculations.
View Article and Find Full Text PDFThe purpose of this pilot study was to establish whether a novel freeze-dried curdlan/whey protein isolate-based biomaterial may be taken into consideration as a potential scaffold for matrix-associated autologous chondrocyte transplantation. For this reason, this biomaterial was initially characterized by the visualization of its micro- and macrostructures as well as evaluation of its mechanical stability, and its ability to undergo enzymatic degradation in vitro. Subsequently, the cytocompatibility of the biomaterial towards human chondrocytes (isolated from an orthopaedic patient) was assessed.
View Article and Find Full Text PDFA novel fluorapatite/glucan composite ("FAP/glucan") was developed for the treatment of bone defects. Due to the presence of polysaccharide polymer (β-1,3-glucan), the composite is highly flexible and thus very convenient for surgery. Its physicochemical and microstructural properties were evaluated using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), mercury intrusion, mechanical testing and compared with the reference material, which was a hydroxyapatite/glucan composite ("HAP/glucan") with hydroxyapatite granules (HAP) instead of FAP.
View Article and Find Full Text PDFThe aim of this work was to establish whether novel curdlan-based hydrogels enriched with Ca ions may be considered as potential candidates for dressings, for the acceleration of skin wound healing. Firstly, biomaterials were allocated for evaluation of structural and mechanical properties. Subsequently, the ability of hydrogels to absorb simulated wound fluid and water vapor permeability, as well their capacity to release calcium ions, was evaluated.
View Article and Find Full Text PDFGiven the health-beneficial properties of compounds from hop, there is still a growing trend towards developing successful extraction methods with the highest yield and also receiving the products with high added value. The aim of this study was to develop efficient extraction method for isolation of bioactive compounds from the Polish "Marynka" hop variety. The modified two-step supercritical fluid extraction allowed to obtain two hop samples, namely crude extract (E1), composed of α-acids, β-acids, and terpene derivatives, as well as pure xanthohumol with higher yield than that of other available methods.
View Article and Find Full Text PDFThe purpose of this study was to make an initial assessment of new PEG (polyethylene glycol)-functionalized C fullerene derivative for potential bone tissue engineering applications. Thus, Fourier Transform Infrared spectroscopy analysis, thermogravimetric analysis, and cyclic voltammetry measurement were performed. Moreover, cell culture experiments in vitro were carried out using normal human osteoblasts.
View Article and Find Full Text PDFThe risk of an early inflammation after implantation surgery of titanium implants has caused the development of different antimicrobial measures. The present research is aimed at characterizing the effects of nanosilver and nanocopper dispersed in the nanohydroxyapatite coatings, deposited on the Ti13Zr13Nb alloy, and on the chemical and biological properties of the coatings. The one-stage deposition process was performed by the electrophoretic method at different contents of nanomaterials in suspension.
View Article and Find Full Text PDFThis paper presents the properties of the wood-resin composites. For improving their antibacterial character, silver nanoparticles were incorporated into their structures. The properties of the obtained materials were analyzed in vitro for their anti-biofilm potency in contact with aerobic Gram-positive and ; and aerobic Gram-negative and .
View Article and Find Full Text PDFIn the present study structural characteristics and physicochemical properties of tri-component biomaterial (consisting of chitosan, β-1,3-glucan and hydroxyapatite) seeded with mesenchymal stem cells were investigated with the use of diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). In this study we use non-conventional approach of DRIFT spectroscopy for investigating biomaterial changes under simulated physiological conditions. Particular cell-induced changes were intended to be properly evaluated with analytical methods.
View Article and Find Full Text PDFRaman spectroscopic imaging and mapping were applied to characterise three-compound ceramic composite biomaterial consisting of chitosan, β-1,3-d-glucan (curdlan) and hydroxyapatite (HA) developed as a bone tissue engineering product (TEP). In this rapidly advancing domain of medical science, the urge for quick, reliable and specific method for products evaluation and tissue-implant interaction, in this case bone formation process, is constantly present. Two types of stem cells, adipose-derived stem cells (ADSCs) and bone marrow-derived stem cells (BMDSCs), were cultured on composite surface.
View Article and Find Full Text PDFA series of 1,2,4-triazole derivatives were synthesized and assigned as potential anti-tuberculosis substances. The molecular and crystal structures for the model compounds C1, C12, and C13 were determined using X-ray analysis. The X-ray investigation confirmed the synthesis pathway and the assumed molecular structures for analyzed 1,2,4-triazol-5-thione derivatives.
View Article and Find Full Text PDFModern bone tissue engineering is based on the use of implants in the form of biomaterials, which are used as scaffolds for osteoprogenitor or stem cells. The task of the scaffolds is to temporarily sustain the function, proliferation and differentiation of bone tissue to enable its regeneration. The aim of this work is to use the macro ATR-FTIR spectroscopic imaging for analysis of the ceramic-based biomaterial (chitosan/β-1,3-glucan/hydroxyapatite).
View Article and Find Full Text PDFThe ternary HAp/curdlan/nanomagnetite hybrids with ceramic and polymer phase incorporation of magnetite nanoparticles (MNPs) were fabricated to study their heating ability under action of the alternating magnetic field (AMF), 808 nm near infrared laser radiation (NIR) and their synergic stimulation. The energy conversion was evaluated in terms of the specific absorption rate (SAR) as a function of the MNPs concentration in composites and to estimate their potential in temperature-controlled regenerative processes and hyperthermia. Measurements were carried out on dry and Ringer's solution soaked composite materials in order to mimic in situ conditions.
View Article and Find Full Text PDFThe aim of this study was to compare the chemical composition, as well as antioxidant, anti-inflammatory, antiacne, and cytotoxic activites of various extracts of and . It is worth underlining that we are the first to characterize the composition and evaluate the biological properties of extracts from and Thus, the LC-DAD-MS analysis revealed the presence of 41 natural products in studied extracts. The 5--caffeoylquinic acid, isoorinetin, and swertiajaponin were the main detected compounds.
View Article and Find Full Text PDFBacterial infections at the wound site still remain a huge problem for current medicine, as they may lead to development of chronic wounds. In order to prevent such infections, there is a need to use wound dressings that possess ability to inhibit bacterial colonization. In this study, three new curdlan-based biomaterials modified with copper ions were fabricated via simple and inexpensive procedure, and their structural, physicochemical, and biological properties in vitro were evaluated.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
November 2020
Calcium phosphates, due to their similarity to the inorganic fraction of mineralized tissues, are of great importance in treatment of bone defects. In order to improve the biological activity of hydroxyapatite (HAP), its fluoride-substituted modification (FAP) was synthesized using the sol-gel method and calcined at three different temperatures in the range of 800-1200 °C. Physicochemical and biological properties were evaluated to indicate which material would support bone regeneration the best.
View Article and Find Full Text PDFLow-temperature atmospheric pressure plasma was demonstrated to have an ability to generate different reactive oxygen and nitrogen species (RONS), showing wide biological actions. Within this study, mesoporous silica nanoparticles (NPs) and FeO/NPs catalysts were produced and embedded in the polysaccharide matrix of chitosan/curdlan/hydroxyapatite biomaterial. Then, basic physicochemical and structural characterization of the NPs and biomaterials was performed.
View Article and Find Full Text PDFThis work aimed to study the anti-bacterial, anti-biofilm and anti-oxidant potential effects of low molecular weight (LMW) peptides (Br-p) isolated from burdock () roots. We conducted a preliminary study to exclude or confirm the antibiotic activity of the LMW peptides fraction of this plant. Br-p were isolated using gel filtration and a 10 kDa cut-off membrane.
View Article and Find Full Text PDF