Publications by authors named "GinaChia-Yi Chu"

Background: The etiology of depression involves many biological and environmental factors, among which the inflammatory process is an important contributor. However, the role of pro-inflammatory cytokines in postmenopausal depression is unclear. Therefore, we aimed to explore the association between the serum concentrations of four pro-inflammatory cytokines (IL-1β, IL-6, IL-18, and TNF-α) and depressive symptoms in postmenopausal women who had been receiving menopause hormone therapy (MHT) for at least 6 months and postmenopausal women who had not received MHT.

View Article and Find Full Text PDF

Background: At present, there is a dearth of objective methodologies for assessing the effectiveness of treatments for Lateral Epicondylitis (LE). This study examined 73 patients suffering from tennis elbow using a multimodal ultrasound approach and investigated the correlation between pertinent indicators and clinical scores.

Methods: 73 patients diagnosed with unilateral tennis elbow by interventional ultrasound at Zhejiang Rongjun Hospital were included in the study.

View Article and Find Full Text PDF

Background: Regulation of messenger RNA (mRNA) transport and translation in neurons is essential for dendritic plasticity and learning/memory development. The trafficking of mRNAs along the hippocampal neuron dendrites remains translationally silent until they are selectively transported into the spines upon glutamate-induced receptor activation. However, the molecular mechanism(s) behind the spine entry of dendritic mRNAs under metabotropic glutamate receptor (mGluR)-mediated neuroactivation and long-term depression (LTD) as well as the fate of these mRNAs inside the spines are still elusive.

View Article and Find Full Text PDF

Rationale And Objectives: To develop and validate a deep learning radiomics nomogram (DLRN) based on T2-weighted MRI to distinguish between borderline ovarian tumors (BOTs) and stage I epithelial ovarian cancer (EOC) preoperatively.

Materials And Methods: This retrospective multicenter study enrolled 279 patients from three centers, divided into a training set (n = 207) and an external test set (n = 72). The intra- and peritumoral radiomics analysis was employed to develop a combined radiomics model.

View Article and Find Full Text PDF

A recent study conducted by Hu et al. has provided novel insights into the perception of strigolactone (SL). These findings offer a comprehensive understanding of activation, termination, and regulation mechanisms involved in SL perception, all of which are crucial for the adaptation of plant architecture to fluctuations in nitrogen availability.

View Article and Find Full Text PDF

Background And Objectives: Some families faced difficulties accessing speech therapy in some areas of Malaysia and/or during the COVID-19 lockdown. Therefore, parent-mediated intervention could be one of the ways to solve this issue, as it has been proven to effectively improve communication skills among children with communication disorders. Hence, a Mandarin parental guidebook comprising a series of language stimulation activities was developed to explore the perception of parents of children with communication disorders, ranging from 3 to 6 years old, regarding the feasibility of (1) conducting speech-language home programs and (2) using a home-based parental guidebook as a tool to deliver a speech-language home program.

View Article and Find Full Text PDF

Background: Investigating brain metabolic networks is crucial for understanding the pathogenesis and functional alterations in Creutzfeldt-Jakob disease (CJD). However, studies on presymptomatic individuals remain limited. This study aimed to examine metabolic network topology reconfiguration in asymptomatic carriers of the PRNP G114V mutation.

View Article and Find Full Text PDF

Introduction: Dihydropyrimidine dehydrogenase (DPD) is a major determinant of cancer 5-fluorouracyl (5-FU) resistance via its direct degradation. However, the mechanisms of tumoral DPD upregulation have not been fully understood.

Objectives: This study aimed to explore the role of S1PR2 in the regulation of tumoral DPD expression, identifying S1PR2 as the potential target for reversing 5-FU resistance.

View Article and Find Full Text PDF

Asymmetric development, in which functional differences occur between left-right symmetrical organs, is widespread in organisms, including fish and mollusks. However, the asymmetry of symmetrical sensory structures in Haliotis discus hannai, a gastropod with a sensitive sensory system, remains unknown. This study analyzed the transcriptomes of three sensory structures (eyestalks, cephalic tentacles, and epipodial tentacles) to explore potential asymmetries in this species.

View Article and Find Full Text PDF

Gilteritinib treats acute myeloid leukemia (AML) with the FMS-like receptor tyrosine kinase-3 (FLT3) internal tandem duplication (ITD) mutation. Dysregulation of histone modification affects the genesis and progression of AML. Strategies targeting key histone regulators have not been applied to the treatment of AML.

View Article and Find Full Text PDF

Upper tract urothelial carcinoma (UTUC) is a rare and challenging subset of the more frequently encountered urothelial carcinomas (UCs), comprising roughly 5-7% of all UCs and less than 10% of all renal tumors. Hematuria is a common presenting symptom in the emergency setting, often prompting imaging to rule out serious etiologies, with UTUC especially posing as a diagnostic challenge. These UTUC lesions of the kidney and ureter are often small, mimicking other pathologies, and are more aggressive than typical UC of the bladder, emphasizing the importance of timely and accurate diagnosis.

View Article and Find Full Text PDF

Parkinson's disease is a complex neurodegenerative disorder characterized by degeneration of dopaminergic neurons, with patients manifesting varying motor and nonmotor symptoms. Previous studies using single-cell RNA sequencing in rodent models and humans have identified distinct heterogeneity of neurons and glial cells with differential vulnerability. Recent studies have increasingly leveraged multiomics approaches, including spatial transcriptomics, epigenomics, and proteomics, in the study of Parkinson's disease, providing new insights into pathogenic mechanisms.

View Article and Find Full Text PDF

3D printed titanium scaffold has promising applications in orthopedics. However, the bioinert titanium presents challenges for promoting vascularization and tissue growth within the porous scaffold for stable osteointegration. In this study, a modular porous titanium scaffold is created using 3D printing and a gradient-surface strategy to immobilize QK peptide on the surface with a bi-directional gradient distribution.

View Article and Find Full Text PDF

Constructing bifunctional electrocatalysts through the synergistic effect of diverse metal sites is crucial for achieving high-efficiency and steady overall water splitting. Herein, a "dual-HER/OER-sites-in-one" strategy is proposed to regulate dominant active sites, wherein Ni/Co(OH)-Ru heterogeneous catalysts formed on nickel foam (NF) demonstrate remarkable catalytic activity for oxygen evolution reaction (OER) as well as hydrogen evolution reaction (HER). Meanwhile, the potentials@10 mA cm of Ni/Co(OH)-Ru@NF for overall alkaline water and seawater splitting are only 1.

View Article and Find Full Text PDF

Two-dimensional conductive metal-organic frameworks (2D c-MOFs) with high electrical conductivity and tunable structures hold significant promise for applications in metal-ion batteries. However, the construction of 3D interpenetrated c-MOFs for applications in metal-ion batteries is rarely reported. Herein, a 3D four-fold interpenetrated c-MOF (Cu-DBC) constructed by conjugated and contorted dibenzo[,]chrysene-2,3,6,7,10,11,14,15-octaol (DBC) ligands is explored as an advanced cathode material for sodium-ion batteries (SIBs) for the first time.

View Article and Find Full Text PDF

Enhancing both strength and plasticity simultaneously in nanostructured materials remains a significant challenge. While grain refinement is effective in increasing strength, it typically leads to reduced plasticity due to localized strain. In this study, we propose a novel design strategy featuring a dual-nano composite structure with grain boundary segregation to enhance the deformation stability of nanostructured materials.

View Article and Find Full Text PDF

Electrocatalytic NO-to-NH reduction (NORR) offers an attractive way to remedy polluted NO and produce value-added NH. In this study, main-group Sn single atoms anchored on S-vacancy-rich MoS (Sn/MoS) are explored as a highly selective NORR catalyst. Combined theoretical computations and in situ spectroscopic measurements reveal that the isolated Sn sites of Sn/MoS can not only promote NO-to-NH activation and hydrogenation but also favor NH desorption and restrict H adsorption, thus enabling a highly selective NORR for NH synthesis.

View Article and Find Full Text PDF

Background: Sodium-glucose cotransporter-2(SGLT-2) inhibitors are a newer class of antidiabetic drugs with the increased risk of euglycemic diabetic ketoacidosis(EuDKA). Encephalopathy is a rare but life-threatening event of EuDKA. Due to paradoxically normal or slightly elevated serum glucose levels, it's easy to be mimicked by cerebral infarction, structural brain damage, thus leading to delayed diagnosis and causing seriously irreversible brain injury.

View Article and Find Full Text PDF

Background: Hyperuricemia is a metabolic disorder associated with obesity. Many studies have reported the effect of bariatric surgery on the decrease of serum uric acid level in patients with hyperuricemia. However, since the update of diagnostic criteria of hyperuricemia, the correlation between preoperative body mass index, postoperative weight changes, and the remission of hyperuricemia in patients with obesity after sleeve gastrectomy requires consensus.

View Article and Find Full Text PDF

ΑBSTRACT: In Parkinson's disease (PD), Lewy pathology deposits in the cerebral cortex, but how the pathology disrupts cortical circuit integrity and function remains poorly understood. To begin to address this question, we injected α-synuclein (αSyn) preformed fibrils (PFFs) into the dorsolateral striatum of mice to seed αSyn pathology in the cortical cortex and induce degeneration of midbrain dopaminergic neurons. We reported that αSyn aggregates accumulate in the motor cortex in a layer- and cell-subtype-specific pattern.

View Article and Find Full Text PDF

Cortical interneurons generated from ganglionic eminence via a long-distance journey of tangential migration display evident cellular and molecular differences across brain regions, which seeds the heterogeneous cortical circuitry in primates. However, whether such regional specifications in interneurons are intrinsically encoded or gained through interactions with the local milieu remains elusive. Here, we recruit 685,692 interneurons from cerebral cortex and subcortex including ganglionic eminence within the developing human and macaque species.

View Article and Find Full Text PDF

Investigations have indicated that there is a correlation between thyroid nodules and patients'negative emotions. Nevertheless, the risk factors contributing to the development of negative emotions in thyroid nodule patients remain unidentified. This cross-sectional study recruited 150 patients diagnosed with thyroid nodules through ultrasound examination from January 2022 to January 2023 at Jinan Central Hospital, the Second Affiliated Hospital of Shandong First Medical University, and Qingyun County Maternal and Child Health Hospital as the case group, which were categorized based on their levels of anxiety and depression.

View Article and Find Full Text PDF

Despite their critical role in context-dependent interactions for protein functions, intrinsically disordered regions (IDRs) are often overlooked for designing peptide assemblies. Here, we exploit IDRs to enable context-dependent heterotypic assemblies of intrinsically disordered peptides, where "context-dependent" refers to assembly behavior driven by interactions with other molecules. By attaching an aromatic segment to oppositely charged intrinsically disordered peptides, we achieve a nanofiber formation.

View Article and Find Full Text PDF

The ZSM-5 zeolite is the key active component in high-severity fluid catalytic cracking (FCC) catalysts and is routinely activated by phosphorus compounds in industrial production. To date, however, the detailed structure and function of the introduced phosphorus still remain ambiguous, which hampers the rational design of highly efficient catalysts. In this work, using advanced solid-state NMR techniques, we have quantitatively identified a total of seven types of P-containing complexes in P-modified ZSM-5 zeolite and clearly revealed their structure, location, and catalytic role.

View Article and Find Full Text PDF