Publications by authors named "Gina Wimp"

Plant-insect interactions can be complex and elusive. A new study shows that sap-feeding herbivores reduce tree emissions of specific volatile organic compounds that attract natural enemies. Sap-feeding insects thereby provide enemy-free space for chewing herbivores living on the same tree.

View Article and Find Full Text PDF

Community genetics seeks to understand the mechanisms by which natural genetic variation in heritable host phenotypes can encompass assemblages of organisms such as bacteria, fungi, and many animals including arthropods. Prior studies that focused on plant genotypes have been unable to identify genes controlling community composition, a necessary step to predict ecosystem structure and function as underlying genes shift within plant populations. We surveyed arthropods within an association population of Populus trichocarpa in three common gardens to discover plant genes that contributed to arthropod community composition.

View Article and Find Full Text PDF

Ecological studies investigating the effects of artificial light at night (ALAN) have primarily focused on single or a few species, and seldom on community-level dynamics. As ALAN is a potential cause of insect and biodiversity declines, community-level perspectives are essential. We empirically tested the hypothesis that moth species differentially respond to ALAN and that these responses can cause shifts in community composition.

View Article and Find Full Text PDF

Dead plant biomass from foundation plant species is fundamental for the survival of coastal salt marshes because dead biomass aids in the vertical accretion of the ecosystem. Fungi regulate the decomposition of dead biomass, and thus play an essential role for marsh survival. Despite their importance, little is known about the compositional and functional changes of fungal communities in plant matter throughout senescence and litter decomposition.

View Article and Find Full Text PDF

Litter decomposition is a central ecosystem function because dead plant biomass plays a critical role in carbon storage, the nitrogen (N) cycle, and as food/habitat for animals and microorganisms. In the face of global change, interactions between organisms that participate in litter decomposition are likely to change due to species loss and N pollution. To understand how these global change factors may interact to alter litter decomposition, we manipulated the detritivore community and N concentrations in a coastal salt marsh for 2 years.

View Article and Find Full Text PDF

(black willow) is a widespread tree that hosts many species of polylectic hymenopterans and oligolectic bees of the genus . The early flowering of makes it an important nutritive resource for arthropods emerging from hibernation. However, since is dioecious, not all insect visits will lead to successful pollination.

View Article and Find Full Text PDF

Increasing host plant quality affects higher trophic level predators, but whether such changes are simply a result of prey density or are also affected by changes in prey quality remain uncertain. Moreover, whether changes in prey quality affect measures of predator performance is understudied. Using a combination of field and greenhouse mesocosm experiments, we demonstrate that the survival and body size of a hunting spider ( Araneae: Lycosidae) is affected more by prey species identity than the trophic level of the prey.

View Article and Find Full Text PDF

Salt marsh and mangrove coastal ecosystems provide critical ecosystem services, but are being lost at an alarming rate. Insect communities in these ecosystems are threatened by human impacts, including sea level rise, habitat loss, external inputs including nutrients, metals, and hydrocarbons, as well as weather events, such as hurricanes. While some disturbances are felt throughout the food web (e.

View Article and Find Full Text PDF

Numerous studies have found that predators can suppress prey densities and thereby impact important ecosystem processes such as plant productivity and decomposition. However, prey suppression by spiders can be highly variable. Unlike predators that feed on prey within a single energy channel, spiders often consume prey from asynchronous energy channels, such as grazing (live plant) and epigeic (soil surface) channels.

View Article and Find Full Text PDF

A vast body of research demonstrates that many ecological and evolutionary processes can only be understood from a tri-trophic viewpoint, that is, one that moves beyond the pairwise interactions of neighbouring trophic levels to consider the emergent features of interactions among multiple trophic levels. Despite its unifying potential, tri-trophic research has been fragmented, following two distinct paths. One has focused on the population biology and evolutionary ecology of simple food chains of interacting species.

View Article and Find Full Text PDF

As part of the long-term fusion of evolutionary biology and ecology (Ford, 1964), the field of community genetics has made tremendous progress in describing the impacts of plant genetic variation on community and ecosystem processes. In the "genes-to-ecosystems" framework (Whitham et al., 2003), genetically based traits of plant species have ecological consequences, but previous studies have not identified specific plant genes responsible for community phenotypes.

View Article and Find Full Text PDF

Generalist predators are thought to be less vulnerable to habitat fragmentation because they use diverse resources across larger spatial scales than specialist predators. Thus, it has been suggested that generalist predators may respond positively to habitat edges or demonstrate no edge response, because they can potentially use prey resources equally well on both sides of the habitat edge. However, most predictions about generalist predator responses to the habitat edge are based solely on prey resources, without consideration of other potential drivers.

View Article and Find Full Text PDF

Although hybridization in plants has been recognized as an important pathway in plant speciation, it may also affect the ecology and evolution of associated communities. Cottonwood species ( and ) and their naturally occurring hybrids are known to support different plant, animal, and microbial communities, but no studies have examined community structure within the context of phylogenetic history. Using a community composed of 199 arthropod species, we tested for differences in arthropod phylogenetic patterns within and among hybrid and parental tree types in a common garden.

View Article and Find Full Text PDF

Habitat fragmentation is the primary factor leading to species extinction worldwide and understanding how species respond to habitat edges is critical for understanding the effects of fragmentation on insect diversity in both natural and managed landscapes. Most studies on insect responses to the habitat edge focus on bottom-up changes in resources. Only a few recent studies have examined multi-trophic responses to habitat edges; the results of these studies highlight the problem that we lack a conceptual framework to understand the complex results observed when a single species' response to an edge 'cascades' throughout the food web in ways that are currently not predictable.

View Article and Find Full Text PDF

While numerous studies have examined the effects of increased primary production on higher trophic levels, most studies have focused primarily on the grazing food web and have not considered the importance of alternate prey channels. This has happened despite the fact that fertilization not only increases grazing herbivore abundance, but other types of consumers such as detritivores that serve as alternate prey for generalist predators. Alternate prey channels can sustain generalist predators at times when prey abundance in the grazing food web is low, thus increasing predator densities and the potential for trophic cascades.

View Article and Find Full Text PDF

Using herbivore-induced plant volatiles (HIPVs) to attract specific natural enemies in the field has proven challenging, partly because of a poor understanding of: (i) which compound(s) to manipulate to attract specific taxa, and (ii) the ecological conditions over which HIPVs are effective. To address these issues, we quantified the response of a complex arthropod community to three common HIPVs (methyl salicylate, cis-3-hexen-1-ol, and phenylethyl alcohol) as individual compounds and equal part blends in corn and soybean fields. Of 119 arthropod taxa surveyed, we found significant responses by four species in corn fields (2 parasitoids, 1 herbivore, and 1 detritivore) and 16 in soybean fields (8 parasitoids, 3 predators, 4 herbivores, and 1 detritivore), with both attractive and repellent effects of the HIPVs observed.

View Article and Find Full Text PDF

Anthropogenic nutrient inputs into native ecosystems cause fluctuations in resources that normally limit plant growth, which has important consequences for associated food webs. Such inputs from agricultural and urban habitats into nearby natural systems are increasing globally and can be highly variable, spanning the range from sporadic to continuous. Despite the global increase in anthropogenically-derived nutrient inputs into native ecosystems, the consequences of variation in subsidy duration on native plants and their associated food webs are poorly known.

View Article and Find Full Text PDF

Multichannel omnivory by generalist predators, especially the use of both grazing and epigeic prey, has the potential to increase predator abundance and decrease herbivore populations. However, predator use of the epigeic web (soil surface detritus/microbe/algae consumers) varies considerably for reasons that are poorly understood. We therefore used a stable isotope approach to determine whether prey availability and predator hunting style (active hunting vs.

View Article and Find Full Text PDF

Despite nearly 100 years of edge studies, there has been little effort to document how edge responses 'cascade' to impact multi-trophic food webs. We examined changes within two, four-tiered food webs located on opposite sides of a habitat edge. Based on a 'bottom-up' resource-based model, we predicted plant resources would decline near edges, causing similar declines in specialist herbivores and their associated predators, while a generalist predator was predicted to increase due to complementary resource use.

View Article and Find Full Text PDF

Numerous studies have examined relationships between primary production and biodiversity at higher trophic levels. However, altered production in plant communities is often tightly linked with concomitant shifts in diversity and composition, and most studies have not disentangled the direct effects of production on consumers. Furthermore, when studies do examine the effects of plant production on animals in terrestrial systems, they are primarily confined to a subset of taxonomic or functional groups instead of investigating the responses of the entire community.

View Article and Find Full Text PDF

Can heritable traits in a single species affect an entire ecosystem? Recent studies show that such traits in a common tree have predictable effects on community structure and ecosystem processes. Because these 'community and ecosystem phenotypes' have a genetic basis and are heritable, we can begin to apply the principles of population and quantitative genetics to place the study of complex communities and ecosystems within an evolutionary framework. This framework could allow us to understand, for the first time, the genetic basis of ecosystem processes, and the effect of such phenomena as climate change and introduced transgenic organisms on entire communities.

View Article and Find Full Text PDF

To test the hypothesis that genes have extended phenotypes on the community, we quantified how genetic differences among cottonwoods affect the diversity, abundance, and composition of the dependent arthropod community. Over two years, five major patterns were observed in both field and common-garden studies that focused on two species of cottonwoods and their naturally occurring F1 and backcross hybrids (collectively referred to as four different cross types). We did not find overall significant differences in arthropod species richness or abundance among cottonwood cross types.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionkri0fituv2l41rjm0hrrejrg31dfep8m): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once