Antibiotic overuse has promoted the spread of antimicrobial resistance (AMR) with significant health and economic consequences. Genome sequencing reveals the widespread presence of antimicrobial resistance genes (ARGs) in diverse microbial environments. Hence, surveillance of resistance reservoirs, like the rarely explored oral microbiome, is necessary to combat AMR.
View Article and Find Full Text PDFChildren's oral health is in a dire state, with dental decay (caries) being one of the most common chronic diseases. While the role of bacteria in the oral microbiome and dental caries is established, the contribution of fungi is relatively unknown. We assessed the oral mycobiome in childhood ( = 17), to determine if the composition of fungi varies between children with and without caries.
View Article and Find Full Text PDFNext-Generation Sequencing is providing insights into the critical role of the oral microbiome in dental diseases. Application of this method can require the collection of dental plaque from large cohorts in field-type conditions, which necessitates a transport medium to preserve the microbiome composition. We evaluated the use of two transport media, VMG II and RNAprotect® Bacteria Reagent (Qiagen), for room temperature storage of dental plaque.
View Article and Find Full Text PDFBackground: Periodontal disease is highly prevalent amongst domestic cats, causing pain, gingival bleeding, reduced food intake, loss of teeth and possibly impacts on overall systemic health. Diet has been suggested to play a role in the development of periodontal disease in cats. There is a complete lack of information about how diet (composition and texture) affects the feline oral microbiome, the composition of which may influence oral health and the development of periodontal disease.
View Article and Find Full Text PDFObjectives: Early colonisation of oral surfaces by periodontal pathogens presents a significant risk factor for subsequent development of destructive disease affecting tissues that support the dentition. The aims of the present study were to establish the age-dependent relationship between sub-gingival profiles of 22 Prevotella species/phylotypes in children, adolescents and adults from an isolated Aboriginal community and, further, to use this information to identify Prevotella species that could serve as microbial risk indicators.
Materials And Methods: DNA isolated from sub-gingival plaque samples (three healthy sites and three inflamed/diseased sites) from adults, adolescents and children was screened for Porphyromonas gingivalis load and 22 Prevotella species/phylotypes by species-specific PCR.
Objectives: Caries process comprises acidogenic and aciduric bacteria that are responsible for lowering the pH and subsequent destruction of hydroxyapatite matrix in enamel and dentine. The aim of this study was to identify the correlation between the pH gradient of a carious lesion and proportion and distribution of four bacterial genera; lactobacilli, streptococci, prevotellae, and fusobacteria with regard to total load of bacteria.
Materials And Methods: A total of 25 teeth with extensive dentinal caries were sampled in sequential layers.
Compared with traditional two-dimensional (2D) proteome analysis of Streptococcus mutans grown as a biofilm from a planktonic culture at steady state (Rathsam et al., Microbiol. 2005, 151, 1823-1837), the use of 2D fluorescence difference gel electrophoresis (DIGE) led to a 3-fold increase in the number of identified protein spots that were significantly altered in their level of expression (P < 0.
View Article and Find Full Text PDFMature biofilm and planktonic cells of Streptococcus mutans cultured in a neutral pH environment were subjected to comparative proteome analysis. Of the 242 protein spots identified, 48 were significantly altered in their level of expression (P<0.050) or were unique to planktonic or biofilm-grown cells.
View Article and Find Full Text PDF