PathBank (https://pathbank.org) and its predecessor database, the Small Molecule Pathway Database (SMPDB), have been providing comprehensive metabolite pathway information for the metabolomics community since 2010. Over the past 14 years, these pathway databases have grown and evolved significantly to meet the needs of the metabolomics community and respond to continuing changes in computing technology.
View Article and Find Full Text PDFBackground And Objectives: Thrombosis is central to the pathogenesis of acute ischemic stroke, with higher thrombin generation being associated with increased stroke risk. The immune system may contribute to thrombin generation in stroke and thus may offer novel strategies for stroke prevention. This study addresses the research question regarding the relationship of thrombin generation to leukocyte gene expression in patients with acute ischemic stroke.
View Article and Find Full Text PDFEmbolic stroke of unknown source (ESUS) represents one in five ischemic strokes. Ipsilateral non-stenotic carotid plaques are identified in 40% of all ESUS. In this narrative review, we summarize the evidence supporting the potential causal relationship between ESUS and non-stenotic carotid plaques; discuss the remaining challenges in establishing the causal link between non-stenotic plaques and ESUS and describe biomarkers of potential interest for future research.
View Article and Find Full Text PDFHemorrhagic transformation (HT) is a common complication in patients with acute ischemic stroke. It occurs when peripheral blood extravasates across a disrupted blood brain barrier (BBB) into the brain following ischemic stroke. Preventing HT is important as it worsens stroke outcome and increases mortality.
View Article and Find Full Text PDFPurpose Of Review: Diagnosis of stroke and understanding the mechanism of stroke is critical to implement optimal treatment. RNA expressed in peripheral blood cells is emerging as a precision biomarker to aid in stroke diagnosis and prediction of stroke cause. In this review, we summarize available data regarding the role of RNA to predict stroke, the rationale for these changes, and a discussion of novel mechanistic insight and clinical applications.
View Article and Find Full Text PDF