Publications by authors named "Gina R Kuperberg"

During language comprehension, the larger neural response to unexpected versus expected inputs is often taken as evidence for predictive coding-a specific computational architecture and optimization algorithm proposed to approximate probabilistic inference in the brain. However, other predictive processing frameworks can also account for this effect, leaving the unique claims of predictive coding untested. In this study, we used MEG to examine both univariate and multivariate neural activity in response to expected and unexpected inputs during word-by-word reading comprehension.

View Article and Find Full Text PDF

We used MEG and EEG to examine the effects of Plausibility ( vs. ) and Animacy ( vs. ) on activity to incoming words during language comprehension.

View Article and Find Full Text PDF

The N400 event-related component has been widely used to investigate the neural mechanisms underlying real-time language comprehension. However, despite decades of research, there is still no unifying theory that can explain both its temporal dynamics and functional properties. In this work, we show that predictive coding - a biologically plausible algorithm for approximating Bayesian inference - offers a promising framework for characterizing the N400.

View Article and Find Full Text PDF

During language comprehension, the processing of each incoming word is facilitated in proportion to its predictability. Here, we asked whether anticipated upcoming linguistic information is actually pre-activated before new bottom-up input becomes available, and if so, whether this pre-activation is limited to the level of semantic features, or whether extends to representations of individual word-forms (orthography/phonology). We carried out Representational Similarity Analysis on EEG data while participants read highly constraining sentences.

View Article and Find Full Text PDF

This workshop summary on natural language processing (NLP) markers for psychosis and other psychiatric disorders presents some of the clinical and research issues that NLP markers might address and some of the activities needed to move in that direction. We propose that the optimal development of NLP markers would occur in the context of research efforts to map out the underlying mechanisms of psychosis and other disorders. In this workshop, we identified some of the challenges to be addressed in developing and implementing NLP markers-based Clinical Decision Support Systems (CDSSs) in psychiatric practice, especially with respect to psychosis.

View Article and Find Full Text PDF

We used magnetoencephalography (MEG) and event-related potentials (ERPs) to track the time-course and localization of evoked activity produced by expected, unexpected plausible, and implausible words during incremental language comprehension. We suggest that the full pattern of results can be explained within a hierarchical predictive coding framework in which increased evoked activity reflects the activation of residual information that was not already represented at a given level of the fronto-temporal hierarchy ("error" activity). Between 300 and 500 ms, the three conditions produced progressively larger responses within left temporal cortex (lexico-semantic prediction error), whereas implausible inputs produced a selectively enhanced response within inferior frontal cortex (prediction error at the level of the event model).

View Article and Find Full Text PDF

In people with schizophrenia and related disorders, impairments in communication and social functioning can negatively impact social interactions and quality of life. In the present study, we investigated the cognitive basis of a specific aspect of linguistic communication-lexical alignment-in people with schizophrenia and bipolar disorder. We probed lexical alignment as participants played a collaborative picture-naming game with the experimenter, in which the two players alternated between naming a dual-name picture (e.

View Article and Find Full Text PDF

During language comprehension, we routinely use information from the prior context to help identify the meaning of individual words. While measures of online processing difficulty, such as reading times, are strongly influenced by contextual predictability, there is disagreement about the mechanisms underlying this lexical predictability effect, with different models predicting different linking functions - (Reichle, Rayner & Pollatsek, 2003) or (Levy, 2008). To help resolve this debate, we conducted two highly-powered experiments (self-paced reading, N = 216; cross-modal picture naming, N = 36), and a meta-analysis of prior eye-tracking while reading studies (total N = 218).

View Article and Find Full Text PDF

To make sense of the world around us, we must be able to segment a continual stream of sensory inputs into discrete events. In this review, I propose that in order to comprehend events, we engage hierarchical generative models that "reverse engineer" the intentions of other agents as they produce sequential action in real time. By generating probabilistic predictions for upcoming events, generative models ensure that we are able to keep up with the rapid pace at which perceptual inputs unfold.

View Article and Find Full Text PDF

During language comprehension, online neural processing is strongly influenced by the constraints of the prior context. While the N400 ERP response (300-500ms) is known to be sensitive to a word's semantic predictability, less is known about a set of late positive-going ERP responses (600-1000ms) that can be elicited when an incoming word violates strong predictions about upcoming content () or about what is possible given the prior context (). Across three experiments, we systematically manipulated the length of the prior context and the source of lexical constraint to determine their influence on comprehenders' online neural responses to these two types of prediction violations.

View Article and Find Full Text PDF

It has been proposed that abnormalities in probabilistic prediction and dynamic belief updating explain the multiple features of schizophrenia. Here, we used electroencephalography (EEG) to ask whether these abnormalities can account for the well-established reduction in semantic priming observed in schizophrenia under nonautomatic conditions. We isolated predictive contributions to the neural semantic priming effect by manipulating the prime's predictive validity and minimizing retroactive semantic matching mechanisms.

View Article and Find Full Text PDF

It has been proposed that people can generate probabilistic predictions at multiple levels of representation during language comprehension. We used magnetoencephalography (MEG) and electroencephalography (EEG), in combination with representational similarity analysis, to seek neural evidence for the prediction of animacy features. In two studies, MEG and EEG activity was measured as human participants (both sexes) read three-sentence scenarios.

View Article and Find Full Text PDF

It has been proposed that hierarchical prediction is a fundamental computational principle underlying neurocognitive processing. Here, we ask whether the brain engages distinct neurocognitive mechanisms in response to inputs that fulfill versus violate strong predictions at different levels of representation during language comprehension. Participants read three-sentence scenarios in which the third sentence constrained for a broad event structure, for example, {}.

View Article and Find Full Text PDF

ERP studies produce large spatiotemporal data sets. These rich data sets are key to enabling us to understand cognitive and neural processes. However, they also present a massive multiple comparisons problem, potentially leading to a large number of studies with false positive effects (a high Type I error rate).

View Article and Find Full Text PDF

A large literature in social neuroscience has associated the medial prefrontal cortex (mPFC) with the processing of self-related information. However, only recently have social neuroscience studies begun to consider the large behavioral literature showing a strong self-positivity bias, and these studies have mostly focused on its correlates during self-related judgments and decision-making. We carried out a functional MRI (fMRI) study to ask whether the mPFC would show effects of the self-positivity bias in a paradigm that probed participants' self-concept without any requirement of explicit self-judgment.

View Article and Find Full Text PDF

When semantic information is activated by a context prior to new bottom-up input (i.e. when a word is predicted), semantic processing of that incoming word is typically facilitated, attenuating the amplitude of the N400 event related potential (ERP) - a direct neural measure of semantic processing.

View Article and Find Full Text PDF

It has been hypothesized that schizophrenia is characterized by overly broad automatic activity within lexico-semantic networks. We used two complementary neuroimaging techniques, Magnetoencephalography (MEG) and functional Magnetic Resonance Imaging (fMRI), in combination with a highly automatic indirect semantic priming paradigm, to spatiotemporally localize this abnormality in the brain. Eighteen people with schizophrenia and 20 demographically-matched control participants viewed target words ("bell") preceded by directly related ("church"), indirectly related ("priest"), or unrelated ("hammer") prime words in MEG and fMRI sessions.

View Article and Find Full Text PDF

Background: Schizophrenia is characterized by abnormalities in referential communication, which may be linked to more general deficits in proactive cognitive control. We used event-related potentials to probe the timing and nature of the neural mechanisms engaged as people with schizophrenia linked pronouns to their preceding referents during word-by-word sentence comprehension.

Methods: We measured event-related potentials to pronouns in two-clause sentences in 16 people with schizophrenia and 20 demographically matched control participants.

View Article and Find Full Text PDF

Introduction: Lexico-semantic disturbances are considered central to schizophrenia. Clinically, their clearest manifestation is in language production. However, most studies probing their underlying mechanisms have used comprehension or categorization tasks.

View Article and Find Full Text PDF

Since the early 2000s, several ERP studies have challenged the assumption that we always use syntactic contextual information to influence semantic processing of incoming words, as reflected by the N400 component. One approach for explaining these findings is to posit distinct semantic and syntactic processing mechanisms, each with distinct time courses. While this approach can explain specific datasets, it cannot account for the wider body of findings.

View Article and Find Full Text PDF

We consider several key aspects of prediction in language comprehension: its computational nature, the representational level(s) at which we predict, whether we use higher level representations to predictively pre-activate lower level representations, and whether we 'commit' in any way to our predictions, beyond pre-activation. We argue that the bulk of behavioral and neural evidence suggests that we predict probabilistically and at multiple levels and grains of representation. We also argue that we can, in principle, use higher level inferences to predictively pre-activate information at multiple lower representational levels.

View Article and Find Full Text PDF

Probabilistic prediction plays a crucial role in language comprehension. When predictions are fulfilled, the resulting facilitation allows for fast, efficient processing of ambiguous, rapidly-unfolding input; when predictions are not fulfilled, the resulting error signal allows us to adapt to broader statistical changes in this input. We used functional Magnetic Resonance Imaging to examine the neuroanatomical networks engaged in semantic predictive processing and adaptation.

View Article and Find Full Text PDF

We used event-related potentials (ERPs) to examine the interactions between task, emotion, and contextual self-relevance on processing words in social vignettes. Participants read scenarios that were in either third person (other-relevant) or second person (self-relevant) and we recorded ERPs to a neutral, pleasant, or unpleasant critical word. In a previously reported study (Fields and Kuperberg, 2012) with these stimuli, participants were tasked with producing a third sentence continuing the scenario.

View Article and Find Full Text PDF

Language and thought dysfunction are central to the schizophrenia syndrome. They are evident in the major symptoms of psychosis itself, particularly as disorganized language output (positive thought disorder) and auditory verbal hallucinations (AVHs), and they also manifest as abnormalities in both high-level semantic and contextual processing and low-level perception. However, the literatures characterizing these abnormalities have largely been separate and have sometimes provided mutually exclusive accounts of aberrant language in schizophrenia.

View Article and Find Full Text PDF

Prediction or expectancy is thought to play an important role in both music and language processing. However, prediction is currently studied independently in the two domains, limiting research on relations between predictive mechanisms in music and language. One limitation is a difference in how expectancy is quantified.

View Article and Find Full Text PDF