Publications by authors named "Gina M Doody"

The Phosphatases of Regenerating Liver (PRLs) are members of the protein tyrosine phosphatase (PTP) superfamily that play pro-oncogenic roles in cell proliferation, migration, and survival. We previously demonstrated that PRLs can post-translationally downregulate PTEN, a tumor suppressor frequently inactivated in human cancers, by dephosphorylating PTEN at Tyr336, which promotes the NEDD4-mediated PTEN ubiquitination and proteasomal degradation. Here we report that PRLs can also reduce PTEN expression by upregulating MicroRNA-21 (miR-21), which is one of the most frequently overexpressed miRNAs in solid tumors.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV)-driven B cell neoplasms arise from the reactivation of latently infected B cells. In a subset of patients, EBV was seen to drive a polymorphous lymphoproliferative disorder (LPD) in which B cell differentiation was retained. In this work, spontaneous EBV reactivation following B cell mitogen stimulation was shown to provide a potential model of polymorphic EBV-driven LPD.

View Article and Find Full Text PDF

Objective: Autoantibody (autoAbs) production in osteoarthritis (OA), coupled with evidence of disturbed B-cell homoeostasis, suggest a potential role for B-cells in OA. B-cells can differentiate with T-cell help (T-dep) or using alternative Toll like recptor (TLR) co-stimulation (TLR-dep). We analysed the capacity for differentiation of B-cells in OA versus age-matched healthy controls (HCs) and compared the capacity of OA synovitis-derived stromal cells to provide support for plasma cell (PC) maturation.

View Article and Find Full Text PDF

B cells engaging with antigen and secondary signals provided by T cell help, or ligands for Toll-like receptors, undergo a step-wise process of differentiation to eventually produce antibody-secreting plasma cells. During the course of this conversion, the cells transition from a resting, non-growing state to an activated B-cell state engaged in DNA synthesis and mitosis to a terminally differentiated, quiescent cell state with expanded organelles necessary for high levels of secretion. Each of these phases is accompanied by considerable changes in metabolic requirements.

View Article and Find Full Text PDF

Background: The human CD19 antigen is expressed throughout B cell ontogeny with the exception of neoplastic plasma cells and a subset of normal plasma cells. CD19 plays a role in propagating signals from the B cell receptor and other receptors such as CXCR4 in mature B cells. Studies of CD19-deficient patients have confirmed its function during the initial stages of B cell activation and the production of memory B cells; however, its role in the later stages of B cell differentiation is unclear.

View Article and Find Full Text PDF

Multiple myeloma (MM) shows constitutive activation of canonical and noncanonical nuclear factor κB (NF-κB) signaling via genetic mutations or tumor microenvironment (TME) stimulations. A subset of MM cell lines showed dependency for cell growth and survival on the canonical NF-κB transcription factor RELA alone, suggesting a critical role for a RELA-mediated biological program in MM pathogenesis. Here, we determined the RELA-dependent transcriptional program in MM cell lines and found the expression of the cell surface molecules interleukin-27 receptor-α (IL-27Rα) and the adhesion molecule JAM2 to be responsive to RELA at the messenger RNA and protein levels.

View Article and Find Full Text PDF

Ab-secreting cells survive in niche microenvironments, but cellular responses driven by particular niche signals are incompletely defined. The TNF superfamily member a proliferation-inducing ligand (APRIL) can support the maturation of transitory plasmablasts into long-lived plasma cells. In this study, we explore the biological programs established by APRIL in human plasmablasts.

View Article and Find Full Text PDF

Upon encounter with Ag, B cells undergo a sequential process of differentiation to become Ab-secreting plasma cells. Although the key drivers of differentiation have been identified, research has been limited by the lack of in vitro models recapitulating the full process for murine B cells. In this study, we describe methodology using BCR or TLR ligation to obtain plasma cells that are phenotypically mature, have exited cell cycle and express a gene signature concordant with long-lived plasma cells.

View Article and Find Full Text PDF

CRAC channel regulator 2 A (CRACR2A) is a large Rab GTPase that is expressed abundantly in T cells and acts as a signal transmitter between T cell receptor stimulation and activation of the Ca-NFAT and JNK-AP1 pathways. CRACR2A has been linked to human diseases in numerous genome-wide association studies, however, to date no patient with damaging variants in CRACR2A has been identified. In this study, we describe a patient harboring biallelic variants in [paternal allele c.

View Article and Find Full Text PDF

Background: Age-related immune deficiencies are thought to be responsible for increased susceptibility to infection in older adults, with alterations in lymphocyte populations becoming more prevalent over time. The loss of humoral immunity in ageing was attributed to the diminished numbers of B cells and the reduced ability to generate immunoglobulin.

Aims: To compare the intrinsic B-cell capacity for differentiation into mature plasma cells (PCs), between young and old donors, using in vitro assays, providing either effective T-cell help or activation via TLR engagement.

View Article and Find Full Text PDF

Waldenström macroglobulinemia (WM) is a rare malignancy in which clonal B cells infiltrate the bone marrow and give rise to a smaller compartment of neoplastic plasma cells that secrete monoclonal immunoglobulin M paraprotein. Recent studies into underlying mutations in WM have enabled a much greater insight into the pathogenesis of this lymphoma. However, there is considerably less characterization of the way in which WM B cells differentiate and how they respond to immune stimuli.

View Article and Find Full Text PDF

Objective: To assess the prevalence of the MYD88 L265P mutation and variants within NLRP3 and evaluate the status of oligoclonal hematopoiesis in 30 patients with Schnitzler syndrome (SchS).

Methods: Thirty patients with SchS were recruited from 3 clinical centers. Six patients with known acquired cryopyrin-associated periodic syndromes (aCAPS) were included as controls.

View Article and Find Full Text PDF

Recurrent mutational activation of the MAP kinase pathway in plasma cell myeloma implicates growth factor-like signaling responses in the biology of Ab-secreting cells (ASCs). Physiological ASCs survive in niche microenvironments, but how niche signals are propagated and integrated is poorly understood. In this study, we dissect such a response in human ASCs using an in vitro model.

View Article and Find Full Text PDF

The unfolded protein response (UPR) and activation of XBP1 is necessary for high secretory efficiency and functional differentiation of antibody secreting cells (ASCs). The UPR additionally includes a branch in which membrane-bound transcription factors, exemplified by ATF6, undergo intramembrane-proteolysis by the sequential action of site-1 (MBTPS1/S1P) and site-2 proteases (MBTPS2/S2P) and release of the cytoplasmic domain as an active transcription factor. Such regulation is shared with a family of CREB3-related transcription factors and sterol regulatory element-binding proteins (SREBPs).

View Article and Find Full Text PDF

Objective: Aberrant activation of Wnt signaling has been observed in tissues from patients with systemic sclerosis (SSc). This study aimed to determine the role of transforming growth factor β (TGFβ) in driving the increased Wnt signaling, through modulation of axis inhibition protein 2 (Axin-2), a critical regulator of the Wnt canonical pathway.

Methods: Canonical Wnt signaling activation was analyzed by TOPflash T cell factor/lymphoid enhancer factor promoter assays.

View Article and Find Full Text PDF

Long-lived human plasma cells (PCs) play central roles in immunity and autoimmunity and are enriched among the subpopulation of CD19 human PCs. However, whether human CD19 PCs are necessarily aged cells that have gradually lost CD19 expression is not known. Assessing peripheral blood samples at steady-state and during the acute response to influenza vaccination in healthy donors, we identify the presence of phenotypic CD19 plasmablasts, the proliferative precursor state to mature PCs, and demonstrate by ELISPOT that these are Ab-secreting cells (ASCs).

View Article and Find Full Text PDF

Human NK cell deficiencies are rare yet result in severe and often fatal disease, particularly as a result of viral susceptibility. NK cells develop from hematopoietic stem cells, and few monogenic errors that specifically interrupt NK cell development have been reported. Here we have described biallelic mutations in IRF8, which encodes an interferon regulatory factor, as a cause of familial NK cell deficiency that results in fatal and severe viral disease.

View Article and Find Full Text PDF

Plasma cells (PCs) as effectors of humoral immunity produce Igs to match pathogenic insult. Emerging data suggest more diverse roles exist for PCs as regulators of immune and inflammatory responses via secretion of factors other than Igs. The extent to which such responses are preprogrammed in B-lineage cells or can be induced in PCs by the microenvironment is unknown.

View Article and Find Full Text PDF

Human cytomegalovirus (CMV) induces the formation of effector CD8(+) T cells that are maintained for decades during the latent stage of infection. Effector CD8(+) T cells appear quiescent, but maintain constitutive cytolytic capacity and can immediately produce inflammatory cytokines such as IFN-γ after stimulation. It is unclear how effector CD8(+) T cells can be constitutively maintained in a terminal stage of effector differentiation in the absence of overt viral replication.

View Article and Find Full Text PDF

Interferon regulatory factor 4 (IRF4) is central to the transcriptional network of activated B-cell-like diffuse large B-cell lymphoma (ABC-DLBCL), an aggressive lymphoma subgroup defined by gene expression profiling. Since cofactor association modifies transcriptional regulatory input by IRF4, we assessed genome occupancy by IRF4 and endogenous cofactors in ABC-DLBCL cell lines. IRF4 partners with SPIB, PU.

View Article and Find Full Text PDF

X-box binding protein 1 (XBP1) is a central regulator of the endoplasmic reticulum (ER) stress response. It is induced via activation of the IRE1 stress sensor as part of the unfolded protein response (UPR) and has been implicated in several diseases processes. XBP1 can also be activated in direct response to Toll-like receptor (TLR) ligation independently of the UPR but the pathogenic significance of this mode of XBP1 activation is not well understood.

View Article and Find Full Text PDF

In paroxysmal nocturnal hemoglobinuria (PNH), hematopoietic cells lacking glycosylphosphatidylinositol (GPI)-linked proteins on their surface (GPI(neg)) exist alongside normal (GPI+) cells. Analysis of natural killer (NK) cell subsets in 47 PNH patients revealed that the ratio of CD56(bright):CD56(dim) NK cells differed in the GPI+ and GPI(neg) populations, with GPI(neg)CD56(bright) NK cells significantly more abundant in peripheral blood than their normal GPI+ counterparts. Indeed, GPI+CD56(bright) NK cells were not detected in the peripheral blood of some patients, suggesting their trafficking to a niche unavailable to the GPI(neg)CD56(bright) NK cell population.

View Article and Find Full Text PDF