Publications by authors named "Gina L Griffith"

Topical treatment of injuries such as skin wounds and ocular trauma is the favored route of administration. Local drug delivery systems can be applied directly to the injured area, and their properties for releasing therapeutics can be tailored. Topical treatment also reduces the risk of adverse systemic effects while providing very high therapeutic concentrations at the target site.

View Article and Find Full Text PDF

Current strategies to address corneal surface defects are insufficient to successfully resolve damage caused by injury and/or disease. To address this issue, we have developed an ocular wound chamber (OWC) that creates a fluid-filled environment by encompassing damaged ocular and periocular tissues allowing for the continuous delivery of therapeutics. This study tested human platelet lysate (hPL) as a treatment for corneal epithelial defects when used with the OWC.

View Article and Find Full Text PDF

Purpose: To demonstrate that the ocular wound chamber (OWC) can be used for the treatment of bacterial keratitis (BK).

Methods: A blepharotomy was performed on anesthetized, hairless guinea pigs to induce exposure keratopathy 72 hours before corneal wound creation and inoculation. Twenty-four hours postinoculation, eyes were treated with an OWC filled with 500 µL 0.

View Article and Find Full Text PDF

Current therapies available to treat and heal ocular surface injuries and periocular burns are frequently inadequate, costly, and labor intensive. To address these limitations, we have employed a flexible, semitransparent ocular wound chamber (OWC) to provide protection as well as a watertight seal to allow for the constant delivery of therapeutics to the ocular surface and surrounding periocular tissue. This study demonstrates the safety and utilization of the OWC on uninjured eyes and in our exposure keratopathy model.

View Article and Find Full Text PDF

Purpose: Currently available ocular moisture chambers are not adequate to manage the treatment of periocular burns, corneal injuries, and infection. The purpose of these studies was to demonstrate that a flexible, semi-transparent ocular wound chamber device adapted from technology currently used on dermal wounds is safe for use on corneal epithelial injuries.

Materials And Methods: A depilatory cream (Nair™, 30 seconds) was utilized to remove the excess hair surrounding the left eyes of anesthetized Institute Armand Frappier (IAF) hairless, female guinea pigs (Crl:HA-Hrhr).

View Article and Find Full Text PDF

Purpose: The study objective was to test the utilization of a crosslinked, thiolated hyaluronic acid (CMHA-S) film for treating corneal chemical burns.

Methods: Burns 5.5mm in diameter were created on 10 anesthetized, male New Zealand white rabbits by placing a 1N NaOH soaked circular filter paper onto the cornea for 30s.

View Article and Find Full Text PDF

More than 2 million eye injuries and infections occur each year in the United States that leave civilians and military members with reduced or complete vision loss due to the lack of effective therapeutics. Severe ocular injuries and infections occur in varied settings including the home, workplace, and battlefields. In this review, we discuss the potential of developing antimicrobial peptides (AMPs) as therapeutics for the treatment of corneal wounds and infections for which the current treatment options are inadequate.

View Article and Find Full Text PDF

The cationic antimicrobial protein of 37 kDa (CAP37) mediates proliferation, migration, and adhesion of human corneal epithelial cells and promotes corneal re-epithelialization in mouse. The purpose of this study was to investigate the cytokine profile following abrasion of the corneal epithelium, and to identify the cytokines modulated by topical treatment with CAP37 to determine the mechanism by which CAP37 contributes to the recruitment of inflammatory cells and healing of the cornea. The corneal epithelium in mouse eyes was removed and wounds were treated with a saline vehicle or human recombinant CAP37.

View Article and Find Full Text PDF

Polymorphisms in the CAV1/2 genes that encode signature proteins of caveolae are associated with glaucoma, the second leading cause of blindness worldwide, and with its major risk factor, intraocular pressure (IOP). We hypothesized that caveolin-1 (Cav-1) participates in IOP maintenance via modulation of aqueous humor drainage from the eye. We localize caveolae proteins to human and murine conventional drainage tissues and show that caveolae respond to mechanical stimulation.

View Article and Find Full Text PDF

CAP37, a protein constitutively expressed in human neutrophils and induced in response to infection in corneal epithelial cells, plays a significant role in host defense against infection. Initially identified through its potent bactericidal activity for Gram-negative bacteria, it is now known that CAP37 regulates numerous host cell functions, including corneal epithelial cell chemotaxis. Our long-term goal is to delineate the domains of CAP37 that define these functions and synthesize bioactive peptides for therapeutic use.

View Article and Find Full Text PDF

Purpose: The neutrophil-derived granular protein, CAP37, an innate immune system molecule, has antibiotic and immunomodulatory effects on host cells, including corneal epithelial cells. We previously showed that CAP37 modulates corneal epithelial cell migration, adhesion, and proliferation, and that protein kinase C delta (PKCδ) mediates CAP37-induced chemotaxis of these cells. The objective of this study was to investigate the hypothesis that CAP37 facilitates corneal wound healing through the PKC signaling pathway.

View Article and Find Full Text PDF

Purpose: The objective of this study was to elucidate the signaling pathway through which cationic antimicrobial protein of 37 kDa (CAP37) mediates human corneal epithelial cell (HCEC) chemotaxis.

Methods: Immortalized HCECs were treated with pertussis toxin (10 and 1000 ng/mL), protein kinase C (PKC) inhibitors (calphostin c, 50 nM and Ro-31-8220, 100 nM), phorbol esters (phorbol 12,13-dibutyrate, 200 nM and phorbol 12-myristate 13-acetate, 1 μM) known to deplete PKC isoforms, and siRNAs (400 nM) before a modified Boyden chamber assay was used to determine the effect of these inhibitors and siRNAs on CAP37-directed HCEC migration. PKCδ protein levels, PKCδ-Thr(505) phosphorylation, and PKCδ kinase activity was assessed in CAP37-treated HCECs using immunohistochemistry, Western blotting, and a kinase activity assay, respectively.

View Article and Find Full Text PDF