Resting-state network research is extremely influential, yet the functions of many networks remain unknown. In part, this is due to typical (e.g.
View Article and Find Full Text PDFSemantic control is the capability to operate on meaningful representations, selectively focusing on certain aspects of meaning while purposefully ignoring other aspects based on one's behavioral aim. This ability is especially vital for comprehending figurative/ambiguous language. It remains unclear why and how regions involved in semantic control seem reliably juxtaposed alongside other functionally specialized regions in the association cortex, prompting speculation about the relationship between topography and function.
View Article and Find Full Text PDFDecades of neuropsychological and neuroimaging evidence have implicated the lateral parietal cortex (LPC) in a myriad of cognitive domains, generating numerous influential theoretical models. However, these theories fail to explain why distinct cognitive activities appear to implicate common neural regions. Here we discuss a unifying model in which the angular gyrus forms part of a wider LPC system with a core underlying neurocomputational function; the multi-sensory buffering of spatio-temporally extended representations.
View Article and Find Full Text PDFDecades of research have highlighted the importance of lateral parietal cortex (LPC) across a myriad of cognitive domains. Yet, the underlying function of LPC remains unclear. Two domains that have emphasized LPC involvement are semantic memory and episodic memory retrieval.
View Article and Find Full Text PDFThe angular gyrus (AG) region of lateral parietal cortex has been implicated in a wide variety of tasks and functions, generating numerous influential theories. However, these theories largely fail to explain why so many apparently distinct cognitive activities implicate common parietal structures. We propose a unifying model, based on a set of central principles, to account for coalescences of cognitive task activations across AG.
View Article and Find Full Text PDFThe parietal cortex (PC) is implicated in a confusing myriad of different cognitive processes/tasks. Consequently, understanding the nature and organization of the core underlying neurocomputations is challenging. According to the Parietal Unified Connectivity-biased Computation model, two properties underpin PC function and organization.
View Article and Find Full Text PDFOur understanding about the functionality of the brain's default network (DN) has significantly evolved over the past decade. Whereas traditional views define this network based on its suspension/disengagement during task-oriented behavior, contemporary accounts have characterized various situations wherein the DN actively contributes to task performance. However, it is unclear how different task-contexts drive componential regions of the DN to coalesce into a unitary network and fractionate into different subnetworks.
View Article and Find Full Text PDFReading a book, understanding the news reports or any other behaviour involving the processing of meaningful stimuli requires the semantic system to have two main features: being active during an extended period of time and flexibly adapting the internal representation according to the changing environment. Despite being key features of many everyday tasks, formation and updating of the semantic "gestalt" are still poorly understood. In this fMRI study we used naturalistic stimuli and task manipulations to identify the neural network that forms and updates conceptual gestalts during time-extended integration of meaningful stimuli.
View Article and Find Full Text PDFOne-third of stroke survivors experience deficits in word retrieval as a core characteristic of their aphasia, which is frustrating, socially limiting and disabling for their professional and everyday lives. The, as yet, undiscovered 'holy grail' of clinical practice is to establish a treatment that not only improves item naming, but also generalizes to patients' connected speech. Speech production in healthy participants is a remarkable feat of cognitive processing being both rapid (at least 120 words per minute) and accurate (∼one error per 1000 words).
View Article and Find Full Text PDFBuilt upon a wealth of neuroimaging, neurostimulation, and neuropsychology data, a recent proposal set forth a framework termed controlled semantic cognition (CSC) to account for how the brain underpins the ability to flexibly use semantic knowledge (Lambon Ralph et al., 2017; Nature Reviews Neuroscience). In CSC, the 'semantic control' system, underpinned predominantly by the prefrontal cortex, dynamically monitors and modulates the 'semantic representation' system that consists of a 'hub' (anterior temporal lobe, ATL) and multiple 'spokes' (modality-specific areas).
View Article and Find Full Text PDFNumerous cognitive domains have been associated with the lateral parietal cortex, yet how these disparate functions are packed into this region remains unclear. Whilst areas within the dorsal and the ventral parietal cortex (DPC and VPC) show differential function, there is considerable disagreement as to what these functions might be. Studies focussed on individual domains have plotted out variations of function across the region.
View Article and Find Full Text PDFThe default mode network (DMN) and semantic network (SN) are two of the most extensively studied systems, and both are increasingly used as clinical biomarkers in neurological studies. There are strong theoretical reasons to assume a relationship between the networks, as well as anatomical evidence that they might rely on overlapping cortical regions, such as the anterior temporal lobe (ATL) or angular gyrus (AG). Despite these strong motivations, the relationship between the two systems has received minimal attention.
View Article and Find Full Text PDFHow is higher cognitive function organized in the human parietal cortex? A century of neuropsychology and 30 years of functional neuroimaging has implicated the parietal lobe in many different verbal and nonverbal cognitive domains. There is little clarity, however, on how these functions are organized, that is, where do these functions coalesce (implying a shared, underpinning neurocomputation) and where do they divide (indicating different underlying neural functions). Until now, there has been no multi-domain synthesis in order to reveal where there is fusion or fission of functions in the parietal cortex.
View Article and Find Full Text PDFTheories of embodied cognition argue that language comprehension involves sensory-motor re-enactments of the actions described. However, the degree of specificity of these re-enactments as well as the relationship between action and language remains a matter of debate. Here we investigate these issues by examining how hand-specific information (left or right hand) is recruited in language comprehension and action execution.
View Article and Find Full Text PDFDespite much interest in language production and comprehension mechanisms, little is known about the relationship between the two. Previous research suggests that linguistic knowledge is shared across these tasks and that the left inferior frontal gyrus (LIFG) may be commonly recruited. However, it remains unclear the extent to which production and comprehension share competition mechanisms.
View Article and Find Full Text PDFUnderstanding verbs typically activates posterior temporal regions and, in some circumstances, motion perception area V5. However, the nature and role of this activation remains unclear: does language alone indeed activate V5? And are posterior temporal representations modality-specific motion representations, or supra-modal motion-independent event representations? Here, we address these issues by investigating human and object motion sentences compared to corresponding state descriptions. We adopted the blank screen paradigm, which is known to encourage visual imagery, and used a localizer to identify V5 and temporal structures responding to motion.
View Article and Find Full Text PDF