This paper summarizes historical asbestos exposure data collected during the handling of short-fiber chrysotile asbestos that was used as an additive to drilling fluid in oil and gas exploration. A total of 1171 industrial hygiene (IH) personal and area air samples were collected and analyzed from more than 20 drilling rigs between 1972 and 1985. The dataset consists of 1097 short-term samples (<240 min) with more than 80% having sample durations less than 30 min.
View Article and Find Full Text PDFImportance: Fine particles (particulate matter 2.5 μm [PM2.5]), a ubiquitous air pollutant, can deposit in the small airways that play a vital role in asthma.
View Article and Find Full Text PDFHerpesvirus particles have a complex architecture consisting of an icosahedral capsid that is surrounded by a lipid envelope. Connecting these two components is a layer of tegument that consists of various amounts of 20 or more proteins. The arrangement of proteins within the tegument cannot easily be assessed and instead is inferred from tegument interactions identified in reductionist models.
View Article and Find Full Text PDFThe herpes simplex virus (HSV) capsid is released into the cytoplasm after fusion of viral and host membranes, whereupon dynein-dependent trafficking along microtubules targets it to the nuclear envelope. Binding of the capsid to the nuclear pore complex (NPC) is mediated by the capsid protein pUL25 and the capsid-tethered tegument protein pUL36. Temperature-sensitive mutants in both pUL25 and pUL36 dock at the NPC but fail to release DNA.
View Article and Find Full Text PDFNeurotropic herpesviruses exit the peripheral nervous system and return to exposed body surfaces following reactivation from latency. The pUS9 protein is a critical viral effector of the anterograde axonal transport that underlies this process. We recently reported that while pUS9 increases the frequency of sorting of newly assembled pseudorabies virus particles to axons from the neural soma during egress, subsequent axonal transport of individual virus particles occurs with wild-type kinetics in the absence of the protein.
View Article and Find Full Text PDFReactivation from latency results in transmission of neurotropic herpesviruses from the nervous system to body surfaces, referred to as anterograde axonal trafficking. The virus-encoded protein pUS9 promotes axonal dissemination by sorting virus particles into axons, but whether it is also an effector of fast axonal transport within axons is unknown. To determine the role of pUS9 in anterograde trafficking, we analyzed the axonal transport of pseudorabies virus in the presence and absence of pUS9.
View Article and Find Full Text PDF