Copper (Cu), an essential nutrient, promotes wound healing, however, target of Cu action and underlying mechanisms remain elusive. Cu chaperone Antioxidant-1 (Atox1) in the cytosol supplies Cu to the secretory enzymes such as lysyl oxidase (LOX), while Atox1 in the nucleus functions as a Cu-dependent transcription factor. Using mouse cutaneous wound healing model, here we show that Cu content (by X-ray Fluorescence Microscopy) and nuclear Atox1 are increased after wounding, and that wound healing with and without Cu treatment is impaired in Atox1 mice.
View Article and Find Full Text PDFCopper (Cu), an essential micronutrient, plays a fundamental role in inflammation and angiogenesis; however, its precise mechanism remains undefined. Here we uncover a novel role of Cu transport protein Antioxidant-1 (Atox1), which is originally appreciated as a Cu chaperone and recently discovered as a Cu-dependent transcription factor, in inflammatory neovascularization. Atox1 expression is upregulated in patients and mice with critical limb ischemia.
View Article and Find Full Text PDFBackground: Reactive oxygen species (ROS) play an important role in angiogenesis in endothelial cells (ECs) in vitro and neovascularization in vivo. However, little is known about the role of endogenous vascular hydrogen peroxide (H2O2) in postnatal neovascularization.
Methodology/principal Findings: We used Tie2-driven endothelial specific catalase transgenic mice (Cat-Tg mice) and hindlimb ischemia model to address the role of endogenous H2O2 in ECs in post-ischemic neovascularization in vivo.
Extracellular superoxide dismutase (SOD3) is a secretory copper enzyme involved in protecting angiotensin II (Ang II)-induced hypertension. We found previously that Ang II upregulates SOD3 expression and activity as a counterregulatory mechanism; however, underlying mechanisms are unclear. Antioxidant 1 (Atox1) is shown to act as a copper-dependent transcription factor, as well as a copper chaperone, for SOD3 in vitro, but its role in Ang II-induced hypertension in vivo is unknown.
View Article and Find Full Text PDFBackground/aims: Reduced renal L-arginine (L-Arg) synthesis/transport, induction of arginases and increased endogenous NOS inhibitor, asymmetric dimethylarginine (ADMA) will inhibit NO production. This study investigated pathways of L-Arg synthesis/uptake/utilization, ADMA degradation and oxidant/antioxidants in puromycin aminonucleoside (PAN) chronic kidney disease (CKD).
Methods: Rats were given low- (LD) or high-dose (HD) PAN and followed for 11 weeks for proteinuria.
Am J Physiol Heart Circ Physiol
February 2012
p66Shc, a longevity adaptor protein, is demonstrated as a key regulator of reactive oxygen species (ROS) metabolism involved in aging and cardiovascular diseases. Vascular endothelial growth factor (VEGF) stimulates endothelial cell (EC) migration and proliferation primarily through the VEGF receptor-2 (VEGFR2). We have shown that ROS derived from Rac1-dependent NADPH oxidase are involved in VEGFR2 autophosphorylation and angiogenic-related responses in ECs.
View Article and Find Full Text PDFRationale: Copper, an essential nutrient, has been implicated in vascular remodeling and atherosclerosis with unknown mechanism. Bioavailability of intracellular copper is regulated not only by the copper importer CTR1 (copper transporter 1) but also by the copper exporter ATP7A (Menkes ATPase), whose function is achieved through copper-dependent translocation from trans-Golgi network (TGN). Platelet-derived growth factor (PDGF) promotes vascular smooth muscle cell (VSMC) migration, a key component of neointimal formation.
View Article and Find Full Text PDFBackground: The fawn-hooded hypertensive (FHH) rat develops spontaneous glomerulosclerosis that is ameliorated by inhibition of the angiotensin II type 1 receptor (AT-1). Since kidney damage is associated with nitric oxide (NO) deficiency, we investigated how AT-1 antagonism influenced nitric oxide synthase (NOS), as well as NOS substrate [L-arginine (L-Arg)] and inhibitor [asymmetric dimethylarginine (ADMA)]. L-Arg is synthesized by renal argininosuccinate synthase/argininosuccinate lyase (ASS/ASL) and then either consumed within the kidney by arginase II or NOS or released into the circulation.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
January 2010
The kidney is a major site of arginine synthesis where citrulline is converted to arginine via argininosuccinate synthase (ASS) and lyase (ASL). The rate-limiting step in arginine synthesis by the normal kidney is the rate of citrulline delivery and uptake to the renal cortex. We tested whether with chronic kidney disease (CKD) renal arginine synthesis may be compromised.
View Article and Find Full Text PDFBackground: The Fisher 344 (F344) rat kidney transplanted to a Lewis rat recipient is a common model of chronic renal allograft nephropathy (CAN); however, CAN does not develop when the Lewis kidney is grafted into a F344 recipient. In this study we investigated whether a difference in nephron number/glomerular volume exists between the strains that could contribute to a greater susceptibility to development of kidney disease in the F344.
Methods: Separate animals, male F344 and Lewis rats, were subjected to either sham surgery or right uni-nephrectomy and infarction of 2/3 of the left kidney, to produce a 5/6 ablation/infarction injury (5/6 A/I).
Cold temperatures have adverse effects on the human cardiovascular system. Endothelin (ET)-1 is a potent vasoconstrictor. We hypothesized that cold exposure increases ET-1 production and upregulates ET type A (ETA) receptors.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
August 2005
Fetal baroreflex responsiveness increases in late gestation. An important modulator of baroreflex activity is the generation of nitric oxide in the brainstem nuclei that integrate afferent and efferent reflex activity. The present study was designed to test the hypothesis that nitric oxide synthase (NOS) isoforms are expressed in the fetal brainstem and that the expression of one or more of these enzymes is reduced in late gestation.
View Article and Find Full Text PDFThe H-Tx rat has fetal-onset hydrocephalus with a complex mode of inheritance. Previously, quantitative trait locus mapping using a backcross with Fischer F344 rats demonstrated genetic loci significantly linked to hydrocephalus on Chromosomes 10, 11, and 17. Hydrocephalus was preferentially associated with heterozygous alleles on Chrs 10 and 11 and with homozygous alleles on Chr 17.
View Article and Find Full Text PDFCongenital hydrocephalus is a serious neurological disorder with a diverse etiology. Although there is strong evidence for genetic causes, few genes have been identified in humans. The rodent model, the H-Tx rat, has hydrocephalus with an onset in late gestation and a complex mode of inheritance.
View Article and Find Full Text PDF