Publications by authors named "Gimano D Amatngalim"

In cystic fibrosis (CF), defects in the CF transmembrane conductance regulator (CFTR) channel lead to an acidic airway surface liquid (ASL), which compromises innate defence mechanisms, predisposing to pulmonary failure. Restoring ASL pH is a potential therapy for people with CF, particularly for those who cannot benefit from current highly effective modulator therapy. However, we lack a comprehensive understanding of the complex mechanisms underlying ASL pH regulation.

View Article and Find Full Text PDF

The nasal and bronchial epithelium are unified parts of the respiratory tract that are affected in the monogenic disorder cystic fibrosis (CF). Recent studies have uncovered that nasal and bronchial tissues exhibit intrinsic variability, including differences in mucociliary cell composition and expression of unique transcriptional regulatory proteins which relate to germ layer origin. In the present study, we explored whether intrinsic differences between nasal and bronchial epithelial cells persist in cell cultures and affect epithelial cell functioning in CF.

View Article and Find Full Text PDF

Esophageal atresia (EA) is a rare birth defect in which respiratory tract disorders are a major cause of morbidity. It remains unclear whether respiratory tract disorders are in part caused by alterations in airway epithelial cell functions such as the activity of motile cilia. This can be studied using airway epithelial cell culture models of patients with EA.

View Article and Find Full Text PDF

We present a protocol to generate organoids from air-liquid-interface (ALI)-differentiated nasal epithelia. We detail their application as cystic fibrosis (CF) disease model in the cystic fibrosis transmembrane conductance regulator (CFTR)-dependent forskolin-induced swelling (FIS) assay. We describe steps for isolation, expansion and cryostorage of nasal brushing-derived basal progenitor cells, and their differentiation in ALI cultures.

View Article and Find Full Text PDF

Individuals with cystic fibrosis (CF) suffer from severe respiratory disease due to a genetic defect in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which impairs airway epithelial ion and fluid secretion. New CFTR modulators that restore mutant CFTR function have been recently approved for a large group of people with CF (pwCF), but ~19% of pwCF cannot benefit from CFTR modulators Restoration of epithelial fluid secretion through non-CFTR pathways might be an effective treatment for all pwCF. Here, we developed a medium-throughput 384-well screening assay using nasal CF airway epithelial organoids, with the aim to repurpose FDA-approved drugs as modulators of non-CFTR-dependent epithelial fluid secretion.

View Article and Find Full Text PDF

Cystic fibrosis is caused by genetic defects that impair the CFTR channel in airway epithelial cells. These defects may be overcome by specific CFTR modulating drugs, for which the efficacy can be predicted in a personalized manner using 3D nasal-brushing-derived airway organoids in a forskolin-induced swelling assay. Despite of this, previously described CFTR function assays in 3D airway organoids were not fully optimal, because of inefficient organoid differentiation and limited scalability.

View Article and Find Full Text PDF

Background: Recurrent respiratory syncytial virus (RSV) infection requiring hospitalization is rare and the underlying mechanism is unknown. We aimed to determine the role of CD14-mediated immunity in the pathogenesis of recurrent RSV infection.

Methods: We performed genotyping and longitudinal immunophenotyping of the first patient with a genetic CD14 deficiency who developed recurrent RSV infection.

View Article and Find Full Text PDF

Adenine base editing (ABE) enables enzymatic conversion from A-T into G-C base pairs. ABE holds promise for clinical application, as it does not depend on the introduction of double-strand breaks, contrary to conventional CRISPR/Cas9-mediated genome engineering. Here, we describe a cystic fibrosis (CF) intestinal organoid biobank, representing 664 patients, of which ~20% can theoretically be repaired by ABE.

View Article and Find Full Text PDF

In vitro 3D organoid systems have revolutionized the modeling of organ development and diseases in a dish. Fluorescence microscopy has contributed to the characterization of the cellular composition of organoids and demonstrated organoids' phenotypic resemblance to their original tissues. Here, we provide a detailed protocol for performing high-resolution 3D imaging of entire organoids harboring fluorescence reporters and upon immunolabeling.

View Article and Find Full Text PDF

Organoids are self-organizing 3D structures grown from stem cells that recapitulate essential aspects of organ structure and function. Here, we describe a method to establish long-term-expanding human airway organoids from broncho-alveolar resections or lavage material. The pseudostratified airway organoids consist of basal cells, functional multi-ciliated cells, mucus-producing secretory cells, and CC10-secreting club cells.

View Article and Find Full Text PDF

The respiratory tract harbours a variety of microorganisms, collectively called the respiratory microbiota. Over the past few years, alterations in respiratory and gut microbiota composition have been associated with chronic inflammatory diseases of the lungs. How these changes influence disease development and progression is an active field of investigation.

View Article and Find Full Text PDF

It is currently unknown how cigarette smoke-induced airway remodelling affects highly expressed respiratory epithelial defence proteins and thereby mucosal host defence.Localisation of a selected set of highly expressed respiratory epithelial host defence proteins was assessed in well-differentiated primary bronchial epithelial cell (PBEC) cultures. Next, PBEC were cultured at the air-liquid interface, and during differentiation for 2-3 weeks exposed daily to whole cigarette smoke.

View Article and Find Full Text PDF

Vitamin D is a regulator of host defense against infections and induces expression of the antimicrobial peptide hCAP18/LL-37. Vitamin D deficiency is associated with chronic inflammatory lung diseases and respiratory infections. However, it is incompletely understood if and how (chronic) airway inflammation affects vitamin D metabolism and action.

View Article and Find Full Text PDF

Antimicrobial proteins and peptides (AMPs) are a central component of the antibacterial activity of airway epithelial cells. It has been proposed that a decrease in antibacterial lung defense contributes to an increased susceptibility to microbial infection in smokers and patients with chronic obstructive pulmonary disease (COPD). However, whether reduced AMP expression in the epithelium contributes to this lower defense is largely unknown.

View Article and Find Full Text PDF

Cigarette smoking is the main risk factor associated with chronic obstructive pulmonary disease (COPD), and contributes to COPD development and progression by causing epithelial injury and inflammation. Whereas it is known that cigarette smoke (CS) may affect the innate immune function of airway epithelial cells and epithelial repair, this has so far not been explored in an integrated design using mucociliary differentiated airway epithelial cells. In this study, we examined the effect of whole CS exposure on wound repair and the innate immune activity of mucociliary differentiated primary bronchial epithelial cells, upon injury induced by disruption of epithelial barrier integrity or by mechanical wounding.

View Article and Find Full Text PDF

Aberrant activity of a disintegrin and metalloprotease 17 (ADAM17), also known as TACE, and epidermal growth factor receptor (EGFR) has been suggested to contribute to chronic obstructive pulmonary disease (COPD) development and progression. The aim of this study was to investigate the role of these proteins in activation of primary bronchial epithelial cells differentiated at the air-liquid interface (ALI-PBEC) by whole cigarette smoke (CS), comparing cells from COPD patients with non-COPD CS exposure of ALI-PBEC enhanced ADAM17-mediated shedding of the IL-6 receptor (IL6R) and the EGFR agonist amphiregulin (AREG) toward the basolateral compartment, which was more pronounced in cells from COPD patients than in non-COPD controls. CS transiently increased IL6R and AREG mRNA in ALI-PBEC to a similar extent in cultures from both groups, suggesting that posttranslational events determine differential shedding between COPD and non-COPD cultures.

View Article and Find Full Text PDF

Background: Mesenchymal stromal cells (MSCs) are investigated for their potential to reduce inflammation and to repair damaged tissue. Inflammation and tissue damage are hallmarks of chronic obstructive pulmonary disease (COPD) and MSC infusion is a promising new treatment for COPD. Inflammatory mediators attract MSCs to sites of inflammation and affect their immune-modulatory properties, but little is known about their effect on regenerative properties of MSCs.

View Article and Find Full Text PDF

Respiratory infections are a major clinical problem, and treatment is increasingly complicated by the emergence of microbial antibiotic resistance. Development of new antibiotics is notoriously costly and slow; therefore, alternative strategies are needed. Antimicrobial peptides, central effector molecules of the immune system, are being considered as alternatives to conventional antibiotics.

View Article and Find Full Text PDF

Basal cells play a critical role in the response of the airway epithelium to injury and are recently recognized to also contribute to epithelial immunity. Antimicrobial proteins and peptides are essential effector molecules in this airway epithelial innate immunity. However, little is known about the specific role of basal cells in antimicrobial protein and peptide production and about the regulation of the ubiquitous antimicrobial protein RNase 7.

View Article and Find Full Text PDF

Rationale: The generation of protective secretory IgA relies on the epithelial polymeric immunoglobulin receptor (pIgR). pIgR expression is reduced in chronic obstructive pulmonary disease (COPD), but correlation to disease severity and underlying mechanisms remains unknown.

Objectives: To address the hypothesis that pIgR down-regulation in COPD concerns severe disease in relation to aberrant programming of the bronchial epithelium.

View Article and Find Full Text PDF

Activin-A is a pleiotropic cytokine belonging to the transforming growth factor-β superfamily and has been implicated in asthma and pulmonary fibrosis. However, the role of activin-A and its endogenous inhibitor, follistatin, in the pathogenesis of chronic obstructive pulmonary disease (COPD) is unknown. We first quantified activin-A and follistatin in the lungs of air- or cigarette smoke-exposed mice and in the lungs of patients with COPD by immunohistochemistry, ELISA and quantitative real-time PCR.

View Article and Find Full Text PDF