Publications by authors named "Gilmar F Arends"

Flow transport in confined spaces is ubiquitous in technological processes, ranging from separation and purification of pharmaceutical ingredients by microporous membranes and drug delivery in biomedical treatment to chemical and biomass conversion in catalyst-packed reactors and carbon dioxide sequestration. In this work, we suggest a distinct pathway for enhanced liquid transport in a confined space via propelling microdroplets. These microdroplets can form spontaneously from localized liquid-liquid phase separation as a ternary mixture is diluted by a diffusing poor solvent.

View Article and Find Full Text PDF

In situ observation of precipitation or phase separation induced by solvent addition is important in studying its dynamics. Combined with optical and fluorescence microscopy, microfluidic devices have been leveraged in studying the phase separation in various materials including biominerals, nanoparticles, and inorganic crystals. However, strong scattering from the subphases in the mixture is problematic for in situ study of phase separation with high temporal and spatial resolution.

View Article and Find Full Text PDF

Droplets at solid-liquid interfaces play essential roles in a broad range of fields, such as compartmentalized chemical reactions and conversions, high-throughput analysis and sensing, and super-resolution near-field imaging. Our recent work has focused on understanding and controlling the nanodroplet formation on solid surfaces in ternary liquid mixtures. These surface nanodroplets resemble tiny liquid lenses with a typical height of <1 μm and a volume of subfemtoliters.

View Article and Find Full Text PDF