Publications by authors named "Gillian Wu"

Autoimmune disease is a critical health concern, whose etiology remains enigmatic. We hypothesized that immune responses to somatically mutated self proteins could have a role in the development of autoimmune disease. IFN-γ secretion by T cells stimulated with mitochondrial peptides encoded by published mitochondrial DNA was monitored to test the hypothesis.

View Article and Find Full Text PDF

Mutations in mitochondrial (mt) DNA accumulate with age and can result in the generation of neopeptides. Immune surveillance of such neopeptides may allow suboptimal mitochondria to be eliminated, thereby avoiding mt-related diseases, but may also contribute to autoimmunity in susceptible individuals. To date, the direct recognition of neo-mtpeptides by the adaptive immune system has not been demonstrated.

View Article and Find Full Text PDF

In 2013, a novel avian influenza H7N9 virus was identified in human in China. The antigenically distinct H7N9 surface glycoproteins raised concerns about lack of cross-protective neutralizing antibodies. Epitope-specific preexisting T-cell immunity was one of the protective mechanisms in pandemic 2009 H1N1 even in the absence of cross-protective antibodies.

View Article and Find Full Text PDF

Background: The 2009 pandemic influenza was milder than expected. Based on the apparent lack of pre-existing cross-protective antibodies to the A (H1N1)pdm09 strain, it was hypothesized that pre-existing CD4+ T cellular immunity provided the crucial immunity that led to an attenuation of disease severity. We carried out a pilot scale study by conducting in silico and in vitro T cellular assays in healthy population, to evaluate the pre-existing immunity to A (H1N1)pdm09 strain.

View Article and Find Full Text PDF

Objective: To evaluate the impact of age-specific cross-reactive antibody protection levels on the outcomes of a pandemic outbreak of new variants of H3N2 influenza A viruses (H3N2v).

Methods: We calibrated a previously validated agent-based model of human-to-human transmission of influenza viruses to project the outcomes of various protection levels in a remote and isolated Canadian community, when demographics are drawn from the Statistics Canada census data. We then compared the outcomes with a scenario in which demographic variables were shifted to resemble an urban structure.

View Article and Find Full Text PDF

Background: Pre-existing cellular immunity has been recognized as one of the key factors in determining the outcome of influenza infection by reducing the likelihood of clinical disease and mitigates illness. Whether, and to what extent, the effect of this self-protective mechanism can be captured in the population dynamics of an influenza epidemic has not been addressed.

Methods: We applied previous findings regarding T-cell cross-reactivity between the 2009 pandemic H1N1 strain and seasonal H1N1 strains to investigate the possible changes in the magnitude and peak time of the epidemic.

View Article and Find Full Text PDF

Gene conversion (GCV), a mechanism mediated by activation-induced cytidine deaminase (AID) is well established as a mechanism of immunoglobulin diversification in a few species. However, definitive evidence of GCV-like events in human immunoglobulin genes is scarce. The lack of evidence of GCV in human rearranged immunoglobulin gene sequences is puzzling given the presence of highly similar germline donors and the presence of all the enzymatic machinery required for GCV.

View Article and Find Full Text PDF

Somatic hypermutation (SHM) mediated by activation-induced cytidine deaminase (AID) is a transcription-coupled mechanism most responsible for generating high affinity antibodies. An issue remaining enigmatic in SHM is how AID is preferentially targeted during transcription to hypermutable bases in its substrates (WRC motifs) on both DNA strands. AID targets only single stranded DNA.

View Article and Find Full Text PDF

Neisseria meningitidis is the agent of invasive meningococcal disease, including cerebral meningitis and septicemia. Because the diseases caused by different clonal groups (sequence types) have their own epidemiological characteristics, it is important to understand the differences among the genomes of the N. meningitidis clonal groups.

View Article and Find Full Text PDF

Hemokinin-1, encoded by the TAC4 gene, is a tachykinin most closely related to substance P. Previous studies have shown that TAC4 distinguishes itself from other tachykinins by its predominantly non-neuronal expression profile, particularly in cells of the immune system. Here we report for the first time that the highest levels of TAC4 expression are found in the olfactory epithelium.

View Article and Find Full Text PDF

Pathogenic common variable immunodeficiency diseases (CVID) are genetic, usually inherited diseases for which a limited number of genetic defects have been implicated. As CVID presents with a wide range of clinical characteristics, there are likely diverse and for the most part unidentified genetic causes. In some individuals, defects in somatic hypermutation (SHM) have been suggested as the underlying cause of CVID.

View Article and Find Full Text PDF

Background: The relatively mild nature of the 2009 influenza pandemic (nH1N1) highlights the overriding importance of pre-existing immune memory. The absence of cross-reactive antibodies to nH1N1 in most individuals suggests that such attenuation may be attributed to pre-existing cellular immune responses to epitopes shared between nH1N1 virus and previously circulating strains of inter-pandemic influenza A viruses.

Results: We sought to identify potential CD4+ T cell epitopes and predict the level of cross-reactivity of responding T cells.

View Article and Find Full Text PDF

Much attention has been paid to polymorphisms, germline mutations, copy number variations and other inherited forms of genetic disparity among individuals. Less attention, except in the area of tumor formation, has been given to somatic changes to the genome -- changes which have the potential to affect all areas of human health. Discussions of somatic mutations in disease must begin with an understanding of the underlying spontaneous mutation rate/frequency.

View Article and Find Full Text PDF

The surface glycoprotein hemagglutinin (HA) helps the influenza A virus to evade the host immune system by antigenic variation and is a major driving force for viral evolution. In this study, the selection pressure on HA of H5N1 influenza A virus was analyzed using bioinformatics algorithms. Most of the identified positive selection (PS) sites were found to be within or adjacent to epitope sites.

View Article and Find Full Text PDF

Hemokinin-1, encoded by the TAC4 gene, is the most recent addition to the tachykinin family. Although most closely related to the neuropeptide Substance P, Hemokinin-1 distinguishes itself from other tachykinins by its predominantly non-neuronal expression pattern. Its expression in T and B lymphocytes, macrophages, and dendritic cells points to an important role for Hemokinin-1 in the immune system.

View Article and Find Full Text PDF

The production of a mature B cell requires passage through a number of developmental checkpoints. The pre-BCR plays a critical role in passage through the pro-B cell/pre-B cell checkpoint, and thus plays a central role in regulating the differentiation of a B cell. Due to the significance of this receptor, it is imperative that pre-BCR expression and function are precisely regulated.

View Article and Find Full Text PDF

Previous studies on c-Abl-deficient mice have shown high post-natal mortality and lymphopenia. However, the mechanisms by which c-Abl may influence B lymphopoiesis remain obscure. In this study, we analyzed B cell sub-populations at various differentiation stages in the bone marrow (BM) of c-Abl-deficient mice.

View Article and Find Full Text PDF

The human T-cell receptor (TCR) alpha/delta variable loci are interspersed on the chromosome 14q11 and consist of 57 intergenic spaces ranging from 4 to 100 kb in length. To elucidate the evolutionary history of this locus, we searched the intergenic spaces of all TCR alpha/delta variable (TRAV/DV) genes for pseudogenes and potential protein-coding genes. We applied direct open reading frame (ORF) searches, an exon-finding algorithm and comparative genomics.

View Article and Find Full Text PDF

The expression of RAG1 and RAG2 is essential for V(D)J rearrangement of the immunoglobulin (Ig) locus in developing B cells. In mature B cells further V(D)J rearrangement is suppressed and RAG1/2 proteins decline to undetectable levels. However, there is evidence that mature B cells in the periphery may re-express RAG1/2.

View Article and Find Full Text PDF

V(D)J recombination and class switch recombination are the two DNA rearrangement events used to diversify the mouse and human antibody repertoires. While their double strand breaks (DSBs) are initiated by different mechanisms, both processes use non-homologous end joining (NHEJ) in the repair phase. DNA mismatch repair elements (MSH2/MSH6) have been implicated in the repair of class switch junctions as well as other DNA DSBs that proceed through NHEJ.

View Article and Find Full Text PDF

In mice, kappa light chains dominate over lambda in the immunoglobulin repertoire by as much as 20-fold. Although a major contributor to this difference is the recombination signal sequences (RSS), the mechanism by which RSS cause differential representation has not been determined. To elucidate the mechanism, we tested kappa and lambda RSS flanked by their natural 5' and 3' flanks in three systems that monitor V(D)J recombination.

View Article and Find Full Text PDF

Somatic mutations have a role in the pathogenesis of a number of diseases, particularly cancers. Here we present data supporting a role of mitochondrial somatic mutations in an autoimmune disease, rheumatoid arthritis (RA). RA is a complex, multifactorial disease with a number of predisposition traits, including major histocompatibility complex (MHC) type and early bacterial infection in the joint.

View Article and Find Full Text PDF

The T-cell receptor (TCR) alpha and delta loci are particularly interesting because of their unique genomic structure, in that the gene segments for each locus are interspersed. The origin of this remarkable gene segment arrangement is obscure. In this report, we investigated the evolution of the TCRalpha and delta variable loci and their respective recombination signal sequences (RSSs).

View Article and Find Full Text PDF

Although it is generally accepted that Ig heavy chains (HC) are selected at the pre-B cell receptor (pre-BCR) checkpoint, the characteristics of a functional HC and the role of pre-BCR assembly in their selection have remained elusive. We determined the characteristics of HCs that successfully passed the pre-BCR checkpoint by examining transcripts harboring V(H)81X and J(H)4 gene segments from J(H)(+/-) and lambda5(-/-)mice. V(H)81X-J(H)4-HC transcripts isolated from cells before or in the absence of pre-BCR assembly had no distinguishing complementarity-determining region 3 traits.

View Article and Find Full Text PDF