Publications by authors named "Gillian Roberts"

Purpose: Common side effects of taxane chemotherapy are nail toxicity and peripheral neuropathy (CIPN) causing severe impact on the quality of life. Different methods of cryotherapy to prevent these side effects have been tested. We investigated the use of machine-controlled cooling of hands and feet to reduce nail toxicity and CIPN in patients receiving taxane chemotherapy.

View Article and Find Full Text PDF

Background: Optically pumped magnetometers (OPMs) have made moving, wearable magnetoencephalography (MEG) possible. The OPMs typically used for MEG require a low background magnetic field to operate, which is achieved using both passive and active magnetic shielding. However, the background magnetic field is never truly zero Tesla, and so the field at each of the OPMs changes as the participant moves.

View Article and Find Full Text PDF

Several new technologies have emerged promising new Magnetoencephalography (MEG) systems in which the sensors can be placed close to the scalp. One such technology, Optically Pumped MEG (OP-MEG) allows for a scalp mounted system that provides measurements within millimetres of the scalp surface. A question that arises in developing on-scalp systems is: how many sensors are necessary to achieve adequate performance/spatial discrimination? There are many factors to consider in answering this question such as the signal to noise ratio (SNR), the locations and depths of the sources, density of spatial sampling, sensor gain errors (due to interference, subject movement, cross-talk, etc.

View Article and Find Full Text PDF

Traditional magnetoencephalographic (MEG) brain imaging scanners consist of a rigid sensor array surrounding the head; this means that they are maximally sensitive to superficial brain structures. New technology based on optical pumping means that we can now consider more flexible and creative sensor placement. Here we explored the magnetic fields generated by a model of the human hippocampus not only across scalp but also at the roof of the mouth.

View Article and Find Full Text PDF

We demonstrate the first use of Optically Pumped Magnetoencephalography (OP-MEG) in an epilepsy patient with unrestricted head movement. Current clinical MEG uses a traditional SQUID system, where sensors are cryogenically cooled and housed in a helmet in which the patient's head is fixed. Here, we use a different type of sensor (OPM), which operates at room temperature and can be placed directly on the patient's scalp, permitting free head movement.

View Article and Find Full Text PDF

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

View Article and Find Full Text PDF

The human brain undergoes significant functional and structural changes in the first decades of life, as the foundations for human cognition are laid down. However, non-invasive imaging techniques to investigate brain function throughout neurodevelopment are limited due to growth in head-size with age and substantial head movement in young participants. Experimental designs to probe brain function are also limited by the unnatural environment typical brain imaging systems impose.

View Article and Find Full Text PDF

To allow wearable magnetoencephalography (MEG) recordings to be made on unconstrained subjects the spatially inhomogeneous remnant magnetic field inside the magnetically shielded room (MSR) must be nulled. Previously, a large bi-planar coil system which produces uniform fields and field gradients was used for this purpose. Its construction presented a significant challenge, six distinct coils were wound on two 1.

View Article and Find Full Text PDF

Optically-pumped (OP) magnetometers allow magnetoencephalography (MEG) to be performed while a participant's head is unconstrained. To fully leverage this new technology, and in particular its capacity for mobility, the activity of deep brain structures which facilitate explorative behaviours such as navigation, must be detectable using OP-MEG. One such crucial brain region is the hippocampus.

View Article and Find Full Text PDF

One of the most severe limitations of functional neuroimaging techniques, such as magnetoencephalography (MEG), is that participants must maintain a fixed head position during data acquisition. This imposes restrictions on the characteristics of the experimental cohorts that can be scanned and the experimental questions that can be addressed. For these reasons, the use of 'wearable' neuroimaging, in which participants can move freely during scanning, is attractive.

View Article and Find Full Text PDF

Optically pumped magnetometers (OPMs) have reached sensitivity levels that make them viable portable alternatives to traditional superconducting technology for magnetoencephalography (MEG). OPMs do not require cryogenic cooling and can therefore be placed directly on the scalp surface. Unlike cryogenic systems, based on a well-characterised fixed arrays essentially linear in applied flux, OPM devices, based on different physical principles, present new modelling challenges.

View Article and Find Full Text PDF

Virtual reality (VR) provides an immersive environment in which a participant can experience a feeling of presence in a virtual world. Such environments generate strong emotional and physical responses and have been used for wide-ranging applications. The ability to collect functional neuroimaging data whilst a participant is immersed in VR would represent a step change for experimental paradigms; unfortunately, traditional brain imaging requires participants to remain still, limiting the scope of naturalistic interaction within VR.

View Article and Find Full Text PDF

Optically Pumped Magnetometers (OPMs) have emerged as a viable and wearable alternative to cryogenic, superconducting MEG systems. This new generation of sensors has the advantage of not requiring cryogenic cooling and as a result can be flexibly placed on any part of the body. The purpose of this review is to provide a neuroscience audience with the theoretical background needed to understand the physical basis for the signal observed by OPMs.

View Article and Find Full Text PDF

Small, commercially-available Optically Pumped Magnetometers (OPMs) can be used to construct a wearable Magnetoencephalography (MEG) system that allows large head movements to be made during recording. The small dynamic range of these sensors however means that movement in the residual static magnetic field found inside typical Magnetically Shielded Rooms (MSRs) can saturate the sensor outputs, rendering the data unusable. This problem can be ameliorated by using a set of electromagnetic coils to attenuate the spatially-varying remnant field.

View Article and Find Full Text PDF

Recent work has demonstrated that Optically Pumped Magnetometers (OPMs) can be utilised to create a wearable Magnetoencephalography (MEG) system that is motion robust. In this study, we use this system to map eloquent cortex using a clinically validated language lateralisation paradigm (covert verb generation: 120 trials, ∼10 min total duration) in healthy adults (n = 3). We show that it is possible to lateralise and localise language function on a case by case basis using this system.

View Article and Find Full Text PDF

Imaging human brain function with techniques such as magnetoencephalography typically requires a subject to perform tasks while their head remains still within a restrictive scanner. This artificial environment makes the technique inaccessible to many people, and limits the experimental questions that can be addressed. For example, it has been difficult to apply neuroimaging to investigation of the neural substrates of cognitive development in babies and children, or to study processes in adults that require unconstrained head movement (such as spatial navigation).

View Article and Find Full Text PDF

Background: Recommendations from international task forces on geriatric assessment emphasize the need for research including validation of cancer-specific geriatric assessment (C-SGA) tools in oncological settings. This study was to evaluate the feasibility of the SAKK Cancer-Specific Geriatric Assessment (C-SGA) in clinical practice.

Methods: A cross sectional study of cancer patients ≥65 years old (N = 51) with pathologically confirmed cancer presenting for initiation of chemotherapy treatment (07/01/2009-03/31/2011) at two oncology departments in Swiss canton hospitals: Kantonsspital Graubünden (KSGR N = 25), Kantonsspital St.

View Article and Find Full Text PDF

Objective: Minocycline is particularly useful in patients with rheumatoid arthritis (RA) with previous major sepsis, where anti-tumor necrosis factor is relatively contraindicated. Pigmentation is a documented side effect, but predisposing factors in an RA population have not been established. We investigated minocycline induced pigmentation in a population with RA to determine whether skin type and eye color influence predisposition to this side effect.

View Article and Find Full Text PDF