Plants produce a vast array of specialized metabolites, many of which are used as pharmaceuticals, flavors, fragrances, and other high-value fine chemicals. However, most of these compounds occur in non-model plants for which genomic sequence information is not yet available. The production of a large amount of nucleotide sequence data using next-generation technologies is now relatively fast and cost-effective, especially when using the latest Roche-454 and Illumina sequencers with enhanced base-calling accuracy.
View Article and Find Full Text PDFTerpenoids comprise a structurally diverse group of natural products. Despite various and important uses of terpenoids (e.g.
View Article and Find Full Text PDFValerian (Valeriana officinalis) is a popular medicinal plant in North America and Europe. Its root extract is commonly used as a mild sedative and anxiolytic. Among dozens of chemical constituents (e.
View Article and Find Full Text PDFLovastatin, a cyclic nonaketide from Aspergillus terreus, is a hypercholesterolemic agent and a precursor to simvastatin, a semi-synthetic cholesterol-lowering drug. The biosynthesis of the lovastatin backbone (dihydromonacolin L) and the final 2-methylbutyryl decoration have been fully characterized. However, it remains unclear how two central reactions are catalyzed, namely, introduction of the 4a,5-double bond and hydroxylation at C-8.
View Article and Find Full Text PDFSesquiterpene lactones are characteristic natural products in Asteraceae, which constitutes approximately 8% of all plant species. Despite their physiological and pharmaceutical importance, the biochemistry and evolution of sesquiterpene lactones remain unexplored. Here we show that germacrene A oxidase (GAO), evolutionarily conserved in all major subfamilies of Asteraceae, catalyzes three consecutive oxidations of germacrene A to yield germacrene A acid.
View Article and Find Full Text PDFBackground: Sesquiterpene lactones are characteristic metabolites of Asteraceae (or Compositae) which often display potent bioactivities and are sequestered in specialized organs such as laticifers, resin ducts, and trichomes. For characterization of sunflower sesquiterpene synthases we employed a simple method to isolate pure trichomes from anther appendages which facilitated the identification of these genes and investigation of their enzymatic functions and expression patterns during trichome development.
Results: Glandular trichomes of sunflower (Helianthus annuus L.