Global metabolite analysis approaches, coupled with sophisticated data analysis and modeling procedures (metabolomics), permit a dynamic read-out of how cellular proteins interact with cellular and environmental conditions to determine cell status. This type of approach has profound potential for understanding, and subsequently manipulating, the regulation of cell function. As part of our study to define the regulatory events that may be used to maximize production of commercially valuable recombinant proteins from cultured mammalian cells, we have optimized the quenching process to allow retention of physiologically relevant intracellular metabolite profiles in samples from recombinant Chinese hamster ovary (CHO) cells.
View Article and Find Full Text PDFMetabolomics and systems biology require the acquisition of reproducible, robust, reliable, and homogeneous biological data sets. Therefore, we developed and validated standard operating procedures (SOPs) for quenching and efficient extraction of metabolites from Escherichia coli to determine the best methods to approach global analysis of the metabolome. E.
View Article and Find Full Text PDFThe construction of artificial biofilms with defined internal architectures is described. Bacterial cells are suspended in a low conductivity medium, guided to specific areas in a microelectrode array by dielectrophoresis (DEP), and then immobilised using the flocculating agent poly(ethylenimine). Multispecies biofilms can be constructed by introducing different species at different times.
View Article and Find Full Text PDFA novel approach was developed for the construction of biofilms with defined internal architecture using AC electrokinetics and flocculation. Artificial structured microbial consortia (ASMC) consisting of localized layered microcolonies of different cell types were formed by sequentially attracting different cell types to high field regions near microelectrodes using dielectrophoresis. Stabilization of the microbial consortia on the electrode surface was achieved by crosslinking the cells using the flocculant polyethyleneimine (PEI).
View Article and Find Full Text PDF