We discovered that the introduction of a methyl group to the benzylic position of the N-benzyl group in lead compound 1a has a dramatic effect on improving the binding selectivity of this ligand for the prostanoid receptors DP1 (receptor for prostaglandin D(2)) as compared to TP (receptor for thromboxane A(2)). Based on this discovery, we have synthesized a series of potent and highly selective DP1 antagonists. Among them, compound 1h was identified as a highly selective DP1 antagonist with excellent overall properties.
View Article and Find Full Text PDFAzaindole based structures were evaluated as DP1 receptor antagonists. This work has lead to the discovery of potent, selective and distinct DP1 receptor antagonists.
View Article and Find Full Text PDFA new series of indole-based antagonists of the PGD(2) receptor subtype 1 (DP1 receptor) was identified and the progress of the structure-activity relationship study to the identification of potent and selective antagonists is presented. Selective DP1 antagonists with high potency and selectivity were prepared. Of particular interest is the DP1 antagonist 26 with a K(i) value of 1 nM for the DP1 receptor and an IC(50) value of 4.
View Article and Find Full Text PDFThe discovery of the potent and selective prostaglandin D2 (PGD2) receptor (DP) antagonist [(3R)-4-(4-chlorobenzyl)-7-fluoro-5-(methylsulfonyl)-1,2,3,4-tetrahydrocyclopenta[b]indol-3-yl]-acetic acid (13) is presented. Initial lead antagonists 6 and 7 were found to be potent and selective DP antagonists (DP Ki = 2.0 nM for each); however, they both suffered from poor pharmacokinetic profiles, short half-lives and high clearance rates in rats.
View Article and Find Full Text PDFTwo different series of very potent and selective EP(3) antagonists have been reported: a novel series of ortho-substituted cinnamic acids [Belley, M., Gallant, M., Roy, B.
View Article and Find Full Text PDFA novel indole series of PGD2 receptor (DP receptor) antagonists is presented. Optimization of this series led to the identification of potent and selective DP receptor antagonists. In particular, antagonists 35 and 36 were identified with Ki values of 2.
View Article and Find Full Text PDFIbudilast ophthalmic solution exhibited an improved clinical efficacy over cromoglycate in the treatment of allergic conjunctivitis. To further characterize its principal mode of action, the phosphodiesterase (PDE) inhibitory profile of ibudilast has been examined using human recombinant enzymes. Ibudilast, but not the other commonly used anti-allergic ophthalmic solutions including cromoglycate, ketotifen, tranilast and levocabastine, potently inhibits purified human PDE4A, 4B, 4C and 4D with IC50 values at 54, 65, 239 and 166 nM, respectively.
View Article and Find Full Text PDFThe anaphylatoxin C3a is an important immune regulator with a number of distinct functions in both innate and adaptive immunity. Many of these roles have been ascribed to C3a based on studies in mice genetically modified to lack its precursor, C3, or its receptor, C3aR. However, other presumed functions of C3a are based on results obtained with a recently described small molecule ligand of C3aR, SB 290157.
View Article and Find Full Text PDFThe chemoattractant receptor-homologous molecule expressed on T-helper type 2 cells (CRTH2) is a G protein-coupled receptor whose function in vivo has been incompletely characterized. One of the reasons is that its current known ligands, prostaglandin D(2) and some of its metabolites, have either poor selectivity for CRTH2 or are metabolically unstable in vivo. In this study, we describe the biological and pharmacological properties of L-888,607, the first synthetic potent and selective CRTH2 agonist.
View Article and Find Full Text PDFThe synthesis and the EP(1) receptor binding affinity of 2,3-diarylthiophene derivatives are described. The evaluation of the structure-activity relationship (SAR) in this series led to the identification of compounds 4, 7, and 12a, which exhibit high affinity for the human EP(1) receptor and a selectivity greater than 100-fold against the EP(2), EP(3), EP(4), DP, FP, and IP receptors and greater than 25-fold versus the TP receptor. These three antagonists present good pharmacokinetics in rats and significant differences in the way they are distributed in the brain.
View Article and Find Full Text PDFA series of novel ortho-substituted cinnamic acids have been synthesized, and their binding activity and selectivity on the four prostaglandin E(2) receptors evaluated. Many of them are very potent and selective EP(3) antagonists (K(i) 3-10 nM), while compound 9 is a very good and selective EP(2) agonist (K(i) 8 nM). The biological profile of the EP(2) agonist 9 in vivo and the metabolic profile of selected EP(3) antagonists are also reported.
View Article and Find Full Text PDFA series of 2-substituted N-benzyl benzimidazole containing molecules has been synthesized and its structure-activity relationship for the human DP receptor has been evaluated. Selective DP antagonists with nanomolar potency for the DP receptor were identified in this novel series of benzimidazoles.
View Article and Find Full Text PDFAnalogues of PGE(2) wherein the hydroxycyclopentanone ring has been replaced by a lactam have been prepared and evaluated as ligands for the EP(4) receptor. An optimized compound (19a) shows high potency and agonist efficacy at the EP(4) receptor and is highly selective over the other seven known prostaglandin receptors.
View Article and Find Full Text PDFPyridazinone was found to be an excellent core template for selective COX-2 inhibitors. Two potent, selective and orally active COX-2 inhibitors, which were highly efficacious in rat paw edema and rat pyresis models, have been obtained.
View Article and Find Full Text PDF