Publications by authors named "Gillian E Westgate"

This review critically appraises the reported differences in human hair fibre within three related domains of research: hair classification approaches, fibre characteristics and properties. The most common hair classification approach is based on geo-racial origin, defining three main groups: African, Asian and Caucasian hair. This classification does not account sufficiently for the worldwide hair diversity and intergroups variability in curl, shape, size and colour.

View Article and Find Full Text PDF

Pattern hair loss (PHL) is a chronic regressive condition of the scalp, where follicular miniaturisation and decreased scalp hair coverage occurs in affected areas. In all PHL cases, there is a measurable progressive shortening of the terminal hair growth duration, along with reduced linear growth rates. In both genders, PHL initially shows an increase in short telogen hairs ≤30 mm in length, reflecting a cycle completion of under 6 months in affected terminal hair follicles.

View Article and Find Full Text PDF

In women, aging leads to reduced hair density and thinner fibers and can result in female-pattern hair loss. However, the impact of the aging dermal environment on female scalp hair follicles remains unclear. In this study, we document in situ changes in 22 women (aged 19-81 years) and primary cultures of dermal fibroblast and dermal sheath cells.

View Article and Find Full Text PDF

Photoactivation of cryptochrome-family proteins by blue light is a well-established reaction regulating physiology of plants, fungi, bacteria, insects and birds, while impact of blue light on cryptochrome synthesis and/or activity in human non-visual cells remains unknown. Here, we show that 453 nm blue light induces cryptochrome 1 (CRY1) accumulation in human keratinocytes and the hair follicle. CRY1 is prominently expressed in the human anagen hair follicle, including epithelial stem cells.

View Article and Find Full Text PDF

Hair fibres show wide diversity across and within all human populations, suggesting that hair fibre form and colour have been subject to much adaptive pressure over thousands of years. All human hair fibres typically have the same basic structure. However, the three-dimensional shape of the entire fibre varies considerably depending on ethnicity and geography, with examples from very straight hair with no rotational turn about the long axis, to the tightly sprung coils of African races.

View Article and Find Full Text PDF

Hair diversity, its style, colour, shape and growth pattern is one of our most defining characteristics. The natural versus temporary style is influenced by what happens to our hair during our lifetime, such as genetic hair loss, sudden hair shedding, greying and pathological hair loss in the various forms of alopecia because of genetics, illness or medication. Despite the size and global value of the hair care market, our knowledge of what controls the innate and within-lifetime characteristics of hair diversity remains poorly understood.

View Article and Find Full Text PDF

Exogen is the process by which the hair follicle actively sheds its club fiber from the follicle. However, little is known about signals that govern the cellular mechanisms of shedding. Here, we have identified factors that are important in regulating either the retention or release of the hair club fiber from its epithelial silo within the follicle.

View Article and Find Full Text PDF

Human dermal papilla (DP) cells grown in two-dimensional (2D) culture have been studied extensively. However, key differences exist between DP cell activities in vivo and in vitro. Using a suspension method of cell culture to maintain DP cells, we created three-dimensional (3D) dermal spheres morphologically akin to intact (anagen) DPs.

View Article and Find Full Text PDF

Exogen is a distinct phase of the hair cycle describing the process by which the hair club fibre is shed from the follicle. This process is difficult to study in human skin and little is known about the mechanisms involved in the release of club fibres. We sought an alternative model system to study exogen in more detail, and therefore utilised the vibrissa system on the rodent mystacial pad.

View Article and Find Full Text PDF

The hair follicle has the unique capacity to undergo periods of growth, regression, and rest before regenerating itself to restart the cycle. This dynamic cycling capacity enables mammals to change their coats, and for hair length to be controlled on different body sites. More recently, the process of club fiber shedding has been described as a distinct cycle phase known as exogen, and proposed to be an active phase of the hair cycle.

View Article and Find Full Text PDF

Background And Objectives: We have recently shown that repeated low fluence photoepilation (LFP) with intense pulsed light (IPL) leads to effective hair removal, which is fully reversible. Contrary to permanent hair removal treatments, LFP does not induce severe damage to the hair follicle. The purpose of the current study is to investigate the impact of LFP on the structure and the physiology of the hair follicle.

View Article and Find Full Text PDF