Scarce or absent radiology resources impede adoption of artificial intelligence (AI) for medical imaging by resource-poor health institutions. They face limitations in local equipment, personnel expertise, infrastructure, data-rights frameworks, and public policies. The trustworthiness of AI for medical decision making in global health and low-resource settings is hampered by insufficient data diversity, nontransparent AI algorithms, and resource-poor health institutions' limited participation in AI production and validation.
View Article and Find Full Text PDF