Publications by authors named "Gillette M"

Organoids are multicellular structures formed from populations of individual cells allowing modeling of structural and functional aspects of organs and tissues in normal and diseased states. They offer unique opportunities to model and treat disease. Using a mouse embryonic stem cell line, we have cultured organoids that express markers of spinal cord motor neurons as well as motor neurons found within the peripheral nervous system.

View Article and Find Full Text PDF
Article Synopsis
  • The study presents an optimized workflow for analyzing formalin-fixed, paraffin-embedded (FFPE) patient tissues to uncover molecular insights linked to clinical outcomes, utilizing advanced techniques like Adaptive Focused Acoustics (AFA) and liquid chromatography-tandem mass spectrometry (LC-MS/MS).
  • The method allows for the analysis of up to 96 samples, identifying between 8,000-10,000 unique proteins with a high level of quantitative accuracy (<20% median CVs).
  • Applied to lung adenocarcinoma FFPE blocks, the workflow demonstrates superior deep proteome coverage and efficiency, significantly contributing to biomarker discovery and proteomic research in archived samples.
View Article and Find Full Text PDF

Myokines and exosomes, originating from skeletal muscle, are shown to play a significant role in maintaining brain homeostasis. While exercise has been reported to promote muscle secretion, little is known about the effects of neuronal innervation and activity on the yield and molecular composition of biologically active molecules from muscle. As neuromuscular diseases and disabilities associated with denervation impact muscle metabolism, we hypothesize that neuronal innervation and firing may play a pivotal role in regulating secretion activities of skeletal muscles.

View Article and Find Full Text PDF
Article Synopsis
  • Despite the notable advancements in immunotherapy for cancer, only a small percentage (less than 20%) show lasting responses to immune checkpoint blockade, leading researchers to consider combination therapies that target multiple immune evasion strategies.
  • Researchers analyzed data from over 1,000 tumors across ten cancers to identify seven distinct immune subtypes, examining their unique genomic, epigenetic, transcriptomic, and proteomic characteristics.
  • By investigating kinase activities linked to these immune subtypes, the study uncovered potential therapeutic targets that could improve future immunotherapy approaches and precision medicine.
View Article and Find Full Text PDF

Optimal imaging strategies remain underdeveloped to maximize information for fluorescence microscopy while minimizing the harm to fragile living systems. Taking hint from the supercontinuum generation in ultrafast laser physics, we generated supercontinuum fluorescence from untreated unlabeled live samples before nonlinear photodamage onset. Our imaging achieved high-content cell phenotyping and tissue histology, identified bovine embryo polarization, quantified aging-related stress across cell types and species, demystified embryogenesis before and after implantation, sensed drug cytotoxicity in real-time, scanned brain area for targeted patching, optimized machine learning to track small moving organisms, induced two-photon phototropism of leaf chloroplasts under two-photon photosynthesis, unraveled microscopic origin of autumn colors, and interrogated intestinal microbiome.

View Article and Find Full Text PDF

The neurovascular system forms the interface between the tissue of the central nervous system (CNS) and circulating blood. It plays a critical role in regulating movement of ions, small molecules, and cellular regulators into and out of brain tissue and in sustaining brain health. The neurovascular unit (NVU), the cells that form the structural and functional link between cells of the brain and the vasculature, maintains the blood-brain interface (BBI), controls cerebral blood flow, and surveils for injury.

View Article and Find Full Text PDF

We introduce a pioneering approach that integrates pathology imaging with transcriptomics and proteomics to identify predictive histology features associated with critical clinical outcomes in cancer. We utilize 2,755 H&E-stained histopathological slides from 657 patients across 6 cancer types from CPTAC. Our models effectively recapitulate distinctions readily made by human pathologists: tumor vs.

View Article and Find Full Text PDF
Article Synopsis
  • Post-translational modifications (PTMs) significantly influence cell signaling and physiology in both healthy and cancerous cells, with recent advancements in mass spectrometry allowing for precise analysis of these modifications.* -
  • This study utilizes the largest dataset of proteogenomics from 1,110 cancer patients to uncover widespread patterns of protein changes, particularly focusing on acetylation and phosphorylation across 11 cancer types.* -
  • Findings show that specific cancer types exhibit unique PTM-related alterations linked to processes like DNA repair, immune response, kinase activity, and histone regulation, suggesting new potential therapeutic targets.*
View Article and Find Full Text PDF

Cancer driver events refer to key genetic aberrations that drive oncogenesis; however, their exact molecular mechanisms remain insufficiently understood. Here, our multi-omics pan-cancer analysis uncovers insights into the impacts of cancer drivers by identifying their significant cis-effects and distal trans-effects quantified at the RNA, protein, and phosphoprotein levels. Salient observations include the association of point mutations and copy-number alterations with the rewiring of protein interaction networks, and notably, most cancer genes converge toward similar molecular states denoted by sequence-based kinase activity profiles.

View Article and Find Full Text PDF

MemorialCare Medical Group (MCMG) designed and implemented an advanced health care practitioner (AHP)-led home-visit primary care program to address the needs of a frail older adult population, who struggled with arriving for in-office care. We sought to perform a preliminary analysis to determine the program's efficacy. We conducted a retrospective review of patients enrolled in the program through tabulation of total costs of care, inpatient visits (IPVs), emergency department visits (EDVs), and 30-day readmissions (30DRs) 1-year pre-enrollment and postenrollment.

View Article and Find Full Text PDF

Several articles support the use of cancellous iliac crest bone grafting in the treatment of clavicle nonunion; however, there is very little literature on the use of tricortical iliac crest grafts in the setting of clavicle nonunion with bone loss. When it has been studied, tricortical grafting has been shown to produce radiologically confirmed union in the clavicle, leaving patients satisfied with the ultimate outcome. We present two cases of clavicle fracture nonunion successfully treated with tricortical interposition bone grafting.

View Article and Find Full Text PDF

Serial multi-omic analysis of proteome, phosphoproteome, and acetylome provides insights into changes in protein expression, cell signaling, cross-talk and epigenetic pathways involved in disease pathology and treatment. However, ubiquitylome and HLA peptidome data collection used to understand protein degradation and antigen presentation have not together been serialized, and instead require separate samples for parallel processing using distinct protocols. Here we present MONTE, a highly sensitive multi-omic native tissue enrichment workflow, that enables serial, deep-scale analysis of HLA-I and HLA-II immunopeptidome, ubiquitylome, proteome, phosphoproteome, and acetylome from the same tissue sample.

View Article and Find Full Text PDF

Long interspersed element 1 (LINE-1) open reading frame 1 protein (ORF1p) expression is a common feature of many cancer types, including high-grade serous ovarian carcinoma (HGSOC). Here, we report that ORF1p is not only expressed but also released by ovarian cancer and primary tumor cells. Immuno-multiple reaction monitoring-mass spectrometry assays showed that released ORF1p is confidently detectable in conditioned media, ascites, and patients' plasma, implicating ORF1p as a potential biomarker.

View Article and Find Full Text PDF

Cues in the micro-environment are key determinants in the emergence of complex cellular morphologies and functions. Primary among these is the presence of neighboring cells that form networks. For high-resolution analysis, it is crucial to develop micro-environments that permit exquisite control of network formation.

View Article and Find Full Text PDF

To examine the early impact of the COVID-19 pandemic on rural parental stress and family behaviors, parents who participated in a 2-4 grade pediatric obesity intervention completed a survey in May 2020. Parents (N=77) experienced 7.8±2.

View Article and Find Full Text PDF
Article Synopsis
  • Patients on dual antiplatelet therapy (DAPT) who needed urgent procedures were assessed for safety and effectiveness of cangrelor bridging, given its quick onset and offset.
  • The study included 41 mostly older Caucasian males; 22% experienced bleeding events, mostly minor, with a single severe case.
  • Eschewing oral P2Y12 inhibitors in favor of cangrelor may be a viable option for patients needing temporary interruption of antiplatelet therapy.
View Article and Find Full Text PDF

Unlabelled: Microscaled proteogenomics was deployed to probe the molecular basis for differential response to neoadjuvant carboplatin and docetaxel combination chemotherapy for triple-negative breast cancer (TNBC). Proteomic analyses of pretreatment patient biopsies uniquely revealed metabolic pathways, including oxidative phosphorylation, adipogenesis, and fatty acid metabolism, that were associated with resistance. Both proteomics and transcriptomics revealed that sensitivity was marked by elevation of DNA repair, E2F targets, G2-M checkpoint, interferon-gamma signaling, and immune-checkpoint components.

View Article and Find Full Text PDF

Complex brain functions, including learning and memory, arise in part from the modulatory role of astrocytes on neuronal circuits. Functionally, the dentate gyrus (DG) exhibits differences in the acquisition of long-term potentiation (LTP) between day and night. We hypothesize that the dynamic nature of astrocyte morphology plays an important role in the functional circuitry of hippocampal learning and memory, specifically in the DG.

View Article and Find Full Text PDF

Background P2Y12 inhibitor medications are critical following percutaneous coronary intervention (PCI); however, adherence remains suboptimal. Our objective was to assess the effectiveness of a multifaceted intervention to improve P2Y12 inhibitor adherence following PCI. Methods and Results This was a modified stepped wedge trial of 52 eligible hospitals, of which 15 were randomly selected and agreed to participate (29 hospitals declined, and 8 eligible hospitals were not contacted).

View Article and Find Full Text PDF

Oscillatory output from the suprachiasmatic nuclei (SCN) of the hypothalamus communicates time-of-day information to the brain and body. The SCN's intrinsic ~24-h rhythm can be measured in the neuronal firing rate both in vivo and in vitro, where it continues unperturbed. This robust reporter of endogenous physiology in the SCN brain slice can be widely used to study dynamic changes in SCN physiology, its changing sensitivity to phase-altering signals, and underlying mechanisms.

View Article and Find Full Text PDF

Presenilin-1 (PS-1), a component of the gamma (γ)-secretase catalytic complex, has been implicated in Alzheimer's disease (AD) and in tumorigenesis. Interestingly, AD risk is inversely related to melanoma, suggesting that AD-related factors, such as PS-1, may affect melanomagenesis. PS-1 has been shown to reduce Wnt activity by promoting degradation of beta-catenin (β-catenin), an important Wnt signaling partner.

View Article and Find Full Text PDF

Gate-model quantum computers promise to solve currently intractable computational problems if they can be operated at scale with long coherence times and high-fidelity logic. Neutral-atom hyperfine qubits provide inherent scalability owing to their identical characteristics, long coherence times and ability to be trapped in dense, multidimensional arrays. Combined with the strong entangling interactions provided by Rydberg states, all the necessary characteristics for quantum computation are available.

View Article and Find Full Text PDF

Genomic analyses in cancer have been enormously impactful, leading to the identification of driver mutations and development of targeted therapies. But the functions of the vast majority of somatic mutations and copy number variants in tumours remain unknown, and the causes of resistance to targeted therapies and methods to overcome them are poorly defined. Recent improvements in mass spectrometry-based proteomics now enable direct examination of the consequences of genomic aberrations, providing deep and quantitative characterization of tumour tissues.

View Article and Find Full Text PDF