Publications by authors named "Gilles Sansig"

GABAB receptors are the G protein-coupled receptors for the main inhibitory neurotransmitter in the brain, gamma-aminobutyric acid (GABA). Molecular diversity in the GABAB system arises from the GABAB1a and GABAB1b subunit isoforms that solely differ in their ectodomains by a pair of sushi repeats that is unique to GABAB1a. Using a combined genetic, physiological, and morphological approach, we now demonstrate that GABAB1 isoforms localize to distinct synaptic sites and convey separate functions in vivo.

View Article and Find Full Text PDF

Metabotropic glutamate receptors (mGluRs) are known to play a role in synaptic plasticity and learning. We have previously shown that mGluR7 deletion in mice produces a selective working memory (WM) impairment, while other types of memory such as reference memory remain unaffected. Since WM has been associated with Theta activity (6-12 Hz) in EEGs, and since EEG abnormalities have been observed in these mice before, we studied the effect of mGluR7 gene ablation on EEG activity in the hippocampus, in particular in the Theta range, during performance of a WM task.

View Article and Find Full Text PDF

Metabotropic glutamate receptors (mGluRs), and in particular the mGluR group III receptors (subtypes 4, 6, 7, 8) are known to play a role in synaptic plasticity and learning. Here, we report the effect of mGluR7 gene ablation in different learning paradigms. In the acoustic startle response (ASR), no differences were seen between knockout (KO) mice and wildtype (WT) littermates in parameters including prepulse inhibition and habituation.

View Article and Find Full Text PDF

GABAB receptors mediate slow synaptic inhibition in the nervous system. In transfected cells, functional GABAB receptors are usually only observed after coexpression of GABAB(1) and GABAB(2) subunits, which established the concept of heteromerization for G-protein-coupled receptors. In the heteromeric receptor, GABAB(1) is responsible for binding of GABA, whereas GABAB(2) is necessary for surface trafficking and G-protein coupling.

View Article and Find Full Text PDF

Although there is much evidence for a role of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) in the pathophysiology of anxiety and depression, the role of GABA(B) receptors in behavioral processes related to these disorders has not yet been fully established. GABA(B) receptors are G-protein-coupled receptors, which act as functional heterodimers made up of GABA(B(1)) and GABA(B(2)) subunits. Using recently generated GABA(B(1)) -/- mice, which lack functional GABA(B) receptors, and pharmacological tools we assessed the role of GABA(B) receptors in anxiety- and antidepressant-related behaviors.

View Article and Find Full Text PDF

gamma-Hydroxybutyrate (GHB), a metabolite of gamma-aminobutyric acid (GABA), is proposed to function as a neurotransmitter or neuromodulator. gamma-Hydroxybutyrate and its prodrug, gamma-butyrolactone (GBL), recently received increased public attention as they emerged as popular drugs of abuse. The actions of GHB/GBL are believed to be mediated by GABAB and/or specific GHB receptors, the latter corresponding to high-affinity [3H]GHB-binding sites coupled to G-proteins.

View Article and Find Full Text PDF

Glutamatergic neurotransmission has been strongly implicated in the pathophysiology of affective disorders, such as major depression and anxiety. Of all glutamate receptors, the role of group III metabotropic glutamate receptors (mGluR4, mGluR6, mGluR7, mGluR8) in such disorders is the least investigated because of the lack of specific pharmacological tools. To this end, we examined the behavioural profiles of mice with a targeted deletion of the gene for mGluR7 (mGluR7-/-) in animal models of depression and anxiety.

View Article and Find Full Text PDF

Eight subtypes of metabotropic glutamate (mGlu) receptors have been identified of which two, mGlu5 and mGlu7, are highly expressed at synapses made between CA3 and CA1 pyramidal neurons in the hippocampus. This input, the Schaffer collateral-commissural pathway, displays robust long-term potentiation (LTP), a process believed to utilise molecular mechanisms that are key processes involved in the synaptic basis of learning and memory. To investigate the possible function in LTP of mGlu7 receptors, a subtype for which no specific antagonists exist, we generated a mouse lacking this receptor, by homologous recombination.

View Article and Find Full Text PDF

To investigate the role of the myelin-associated protein Nogo-A on axon sprouting and regeneration in the adult central nervous system (CNS), we generated Nogo-A-deficient mice. Nogo-A knockout (KO) mice were viable, fertile, and not obviously afflicted by major developmental or neurological disturbances. The shorter splice form Nogo-B was strongly upregulated in the CNS.

View Article and Find Full Text PDF