The EFSA Panel on Food Contact Materials assessed the safety of 2,2'-oxydiethylamine, which is intended to be used at up to 14% w/w as a monomer along with adipic acid and caprolactam to make polyamide thin films intended for single use, in contact with all types of food under all conditions of time and temperature. Specific migration of 2,2'-oxydiethylamine was tested from a polyamide film in water and was below the limit of quantification (LOQ) of 0.015 mg/kg.
View Article and Find Full Text PDFDietary risk assessment of food contaminants requires a well-established understanding of the exposure in a heterogeneous population. There are many methods for estimating human exposure to food contaminants, such as intake calculations and internal biomarkers of exposure measured in individuals. However, those methods are expensive, partly invasive, and often provide a momentary exposure snapshot.
View Article and Find Full Text PDFLifelong, the general population is exposed to mixtures of chemicals. Most often, risk assessment is performed to estimate the probability of adverse effects in the population using external exposures to a single chemical and considering one route of exposure. To estimate whole exposure to a chemical, human biomonitoring studies are used to measure chemical concentrations in biological matrices.
View Article and Find Full Text PDFThe EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the recycling process Lietpak (EU register number RECYC327), which uses the EREMA MPR technology. The input material is hot caustic washed and dried poly(ethylene terephthalate) (PET) flakes originating from collected post-consumer PET containers, including no more than 5% PET from non-food consumer applications. The flakes are heated in a ■■■■■ reactor under vacuum.
View Article and Find Full Text PDFIn the context of entry into force of Regulation (EU) 2022/1616, EFSA updated the scientific guidance to assist applicants in the preparation of applications for the authorisation or for the modification of an existing authorisation of a 'post-consumer mechanical PET' recycling process (as defined in Annex I of Regulation (EU) 2022/1616) intended to be used for manufacturing materials and articles intended to come into contact with food. This Guidance describes the evaluation criteria and the scientific evaluation approach that EFSA will apply to assess the decontamination capability of recycling processes, as well as the information required to be included in an application dossier. The principle of the scientific evaluation approach is to apply the decontamination efficiency of a recycling process, obtained from a challenge test with surrogate contaminants, to a reference contamination level for post-consumer PET, set at 3 mg/kg PET for a contaminant resulting from possible misuse.
View Article and Find Full Text PDFThe EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the recycling process Guolong (EU register number RECYC323), which uses the EREMA Basic technology. The input material is hot caustic washed and dried poly(ethylene terephthalate) (PET) flakes originating from collected post-consumer PET containers, including no more than 5% PET from non-food consumer applications. The flakes are heated in a ■■■■■ reactor under vacuum before being extruded.
View Article and Find Full Text PDFThe EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the recycling process Palamidis (EU register number RECYC325), which uses the EREMA Basic technology. The input material is hot caustic washed and dried poly(ethylene terephthalate) (PET) flakes originating from collected post-consumer PET containers, including no more than 5% PET from non-food consumer applications. The flakes are heated in a ■■■■■ reactor under vacuum before being extruded.
View Article and Find Full Text PDFThe EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the recycling process Ecopacking (EU register number RECYC324), which uses the EREMA Basic technology. The input material is ■■■■■ washed and dried poly(ethylene terephthalate) (PET) flakes originating from collected post-consumer PET containers, including no more than 5% PET from non-food consumer applications. The flakes are heated in a ■■■■■ reactor ■■■■■ before being extruded.
View Article and Find Full Text PDFThe EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the recycling process KGL (EU register number RECYC326), which uses the EREMA Basic technology. The input material is hot caustic washed and dried poly(ethylene terephthalate) (PET) flakes originating from collected post-consumer PET containers, including no more than 5% PET from non-food consumer applications. The flakes are heated in a ■■■■■ reactor under vacuum before being extruded.
View Article and Find Full Text PDFThe food enzyme asparaginase (l-asparagine amidohydrolase; EC 3.5.1.
View Article and Find Full Text PDFThe food enzyme laccase (benzenediol:oxygen oxidoreductase, i.e. EC 1.
View Article and Find Full Text PDFThe food enzyme triacylglycerol lipase (triacylglycerol acylhydrolase; EC 3.1.1.
View Article and Find Full Text PDFThe EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the recycling process Fucine Film (EU register number RECYC322), which uses the Reifenhäuser technology. The input material consists of hot caustic washed and dried poly(ethylene terephthalate) (PET) flakes mainly originating from collected post-consumer PET containers, including no more than 5% PET from non-food consumer applications. The flakes are extruded under vacuum into sheets.
View Article and Find Full Text PDFThe food enzyme β-glucosidase (β-D-glucoside glucohydrolase; EC 3.2.1.
View Article and Find Full Text PDFThe food enzyme -amylase (4-α-d-glucan glucanohydrolase; EC 3.2.1.
View Article and Find Full Text PDFThe food enzyme 3-phytase (myo-inositol-hexakisphosphate 3-phosphohydrolase EC 3.1.3.
View Article and Find Full Text PDFThe food enzyme glutaminase (l-glutamine amidohydrolase; EC 3.5.1.
View Article and Find Full Text PDFThe food enzyme -l-rhamnosidase (-l-rhamnoside rhamnohydrolase; EC 3.2.1.
View Article and Find Full Text PDFThe food enzyme inulinase (1--d-fructan fructanohydrolase; EC 3.2.1.
View Article and Find Full Text PDFThe EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of amines, di-C14-C18-alkyl, oxidised, renamed by the Panel as amines, di-C14-C20-alkyl, oxidised, from hydrogenated vegetable oil. The substance amines, bis(hydrogenated tallow alkyl) oxidised, consisting of the same components, but originating from tallow, is currently authorised as FCM substance No 768. The vegetable-sourced substance is intended to be used at up to 0.
View Article and Find Full Text PDFThe food enzyme cellobiose phosphorylase (cellobiose: phosphate α-d-glucosyltransferase; EC 2.4.1.
View Article and Find Full Text PDF