Accurate tracking and analysis of animal behavior is crucial for modern systems neuroscience. However, following freely moving animals in naturalistic, three-dimensional (3D) or nocturnal environments remains a major challenge. Here, we present EthoLoop, a framework for studying the neuroethology of freely roaming animals.
View Article and Find Full Text PDFThis article describes a computational model for the sensory perception of self-motion, considered as a compromise between sensory information and physical coherence constraints. This compromise is realized by a dynamic optimization process minimizing a set of cost functions. Measure constraints are expressed as quadratic errors between motion estimates and corresponding sensory signals, using internal models of sensor transfer functions.
View Article and Find Full Text PDF