Y-chromosomal single nucleotide polymorphisms (Y-SNPs) represent a powerful tool in forensic research and casework, especially for inferring paternal ancestry of unknown perpetrators and unidentified bodies. However, the wealth of recently discovered Y-SNPs, the 'jungle' of different evolutionary lineage trees and nomenclatures, and the lack of population-wide data of many phylogenetically mapped Y-SNPs, limits the use of Y-SNPs in routine forensic approaches. Recently, a concise reference phylogeny of the human Y chromosome, the 'Minimal Reference Y-tree', was introduced aiming to provide a stable phylogeny with optimal global discrimination capacity by including the most resolving Y-SNPs.
View Article and Find Full Text PDFOne of the main challenges for the direct imaging of planets around nearby stars is the suppression of the diffracted halo from the primary star. Coronagraphs are angular filters that suppress this diffracted halo. The Apodizing Phase Plate coronagraph modifies the pupil-plane phase with an anti-symmetric pattern to suppress diffraction over a 180 degree region from 2 to 7 λ/D and achieves a mean raw contrast of 10(-4) in this area, independent of the tip-tilt stability of the system.
View Article and Find Full Text PDFWe present two complementary algorithms suitable for using focal-plane measurements to control a wavefront corrector with an extremely high-spatial resolution. The algorithms use linear approximations to iteratively minimize the aberrations seen by the focal-plane camera. The first algorithm, Fast & Furious (FF), uses a weak-aberration assumption and pupil symmetries to achieve fast wavefront reconstruction.
View Article and Find Full Text PDFWe present a method to calibrate a high-resolution wavefront (WF)-correcting device with a single, static camera, located in the focal-plane; no moving of any component is needed. The method is based on a localized diversity and differential optical transfer functions to compute both the phase and amplitude in the pupil plane located upstream of the last imaging optics. An experiment with a spatial light modulator shows that the calibration is sufficient to robustly operate a focal-plane WF sensing algorithm controlling a WF corrector with 40,000 degrees of freedom.
View Article and Find Full Text PDF