The force fluctuations experienced by a boundary wall subjected to a lid-driven cavity flow are investigated by means of numerical simulations based on the discrete-element method. The time-averaged dynamics inside the cavity volume and the resulting steady force on the wall are governed by the boundary macroscopic inertial number, the latter being derived from the shearing velocity and the confinement pressure imposed at the top. The force fluctuations are quantified through measuring both the autocorrelation of force time series and the distributions of grain-wall forces, at distinct spatial scales from particle scale to wall scale.
View Article and Find Full Text PDF