Publications by authors named "Gilles Lagniel"

Peroxiredoxins are HO scavenging enzymes that also carry out HO signaling and chaperone functions. In yeast, the major cytosolic peroxiredoxin, Tsa1 is required for both promoting resistance to HO and extending lifespan upon caloric restriction. We show here that Tsa1 effects both these functions not by scavenging HO, but by repressing the nutrient signaling Ras-cAMP-PKA pathway at the level of the protein kinase A (PKA) enzyme.

View Article and Find Full Text PDF

Understanding the mechanisms involved in the interaction of proteins with inorganic surfaces is of major interest for both basic research and practical applications involving nanotechnology. From the list of cellular proteins with the highest affinity for silica nanoparticles, we highlighted the group of proteins containing arginine-glycine-glycine (RGG) motifs. Biochemical experiments confirmed that RGG motifs interact strongly with the silica surfaces.

View Article and Find Full Text PDF

Upon contact with biological fluids, nanoparticles (NPs) are readily coated by cellular compounds, particularly proteins, which are determining factors for the localization and toxicity of NPs in the organism. Here, we improved a methodological approach to identify proteins that adsorb on silica NPs with high affinity. Using large-scale proteomics and mixtures of soluble proteins prepared either from yeast cells or from alveolar human cells, we observed that proteins with large unstructured region(s) are more prone to bind on silica NPs.

View Article and Find Full Text PDF
Article Synopsis
  • Organisms in oxygen-rich environments face damage from Reactive Oxygen Species (ROS), which can harm important cell parts but also help with various biological processes.
  • Cells use a system of enzymes and small molecules like glutathione (GSH) to manage ROS and protect themselves.
  • Research on yeast cells showed that even small amounts of GSH help protect the cell's nucleus from damage during stress caused by ROS, allowing cells to survive and recover.
View Article and Find Full Text PDF

The understanding of the mechanisms involved in the interaction of proteins with inorganic surfaces is of major interest in both fundamental research and applications such as nanotechnology. However, despite intense research, the mechanisms and the structural determinants of protein/surface interactions are still unclear. We developed a strategy consisting in identifying, in a mixture of hundreds of soluble proteins, those proteins that are adsorbed on the surface and those that are not.

View Article and Find Full Text PDF

Glutathione (GSH) is considered the most important redox buffer of the cell. To better characterize its essential function during oxidative stress conditions, we studied the physiological response of H2O2-treated yeast cells containing various amounts of GSH. We showed that the transcriptional response of GSH-depleted cells is severely impaired, despite an efficient nuclear accumulation of the transcription factor Yap1.

View Article and Find Full Text PDF

Glutathione (GSH) has several important functions in eukaryotic cells, and its intracellular concentration is tightly controlled. Combining mathematical models and (35)S labeling, we analyzed Saccharomyces cerevisiae sulfur metabolism. This led us to the observation that GSH recycling is markedly faster than previously estimated.

View Article and Find Full Text PDF

Cadmium (Cd(2+)) is a very toxic metal that causes DNA damage, oxidative stress and apoptosis. Despite many studies, the cellular and molecular mechanisms underlying its high toxicity are not clearly understood. We show here that very low doses of Cd(2+) cause ER stress in Saccharomyces cerevisiae as evidenced by the induction of the unfolded protein response (UPR) and the splicing of HAC1 mRNA.

View Article and Find Full Text PDF

With the development of systems biology projects aimed at modeling the cell, accurate and absolute measurements of cellular protein concentrations are increasingly important. However, methods for absolute quantification at the proteomic level remain rare. Using the yeast Saccharomyces cerevisiae, we propose a new method based on the radioactive labeling with an (35)S compound and 2-D PAGE.

View Article and Find Full Text PDF

The cellular response to hydrogen peroxide (H(2)O(2)) is characterized by a repression of growth-related processes and an enhanced expression of genes important for cell defense. In budding yeast, this response requires the activation of a set of transcriptional effectors. Some of them, such as the transcriptional activator Yap1, are specific to oxidative stress, and others, such as the transcriptional activators Msn2/4 and the negative regulator Maf1, are activated by a wide spectrum of stress conditions.

View Article and Find Full Text PDF

Chromate is a widespread pollutant as a waste of human activities. However, the mechanisms underlying its high toxicity are not clearly understood. In this work, we used the yeast Saccharomyces cerevisiae to analyse the physiological effects of chromate exposure in a eukaryote cell model.

View Article and Find Full Text PDF

Repair of DNA damage is fundamental for cellular tolerance to ionizing radiation (IR) and many IR-induced DNA lesions are thought to occur as a result of oxidative stress. We investigated the physiological effects of IR in Saccharomyces cerevisiae by performing protein expression profiles in cells exposed to electron pulse irradiation. Transient induction of several antioxidant enzymes in wild-type cells, but not in cells lacking the oxidative stress regulator Yap1, indicated that IR exposure causes cellular oxidative stress.

View Article and Find Full Text PDF

Arsenic is ubiquitously present in nature, and various mechanisms have evolved enabling cells to evade toxicity and acquire tolerance. Herein, we explored how Saccharomyces cerevisiae (budding yeast) respond to trivalent arsenic (arsenite) by quantitative transcriptome, proteome, and sulfur metabolite profiling. Arsenite exposure affected transcription of genes encoding functions related to protein biosynthesis, arsenic detoxification, oxidative stress defense, redox maintenance, and proteolytic activity.

View Article and Find Full Text PDF

Metabolomics is considered as an emerging new tool for functional proteomics in the identification of new protein function or in projects aiming at modeling whole cell metabolism. When combined with proteome studies, metabolite-profiling analyses revealed unanticipated insights into the yeast sulfur pathway. In response to cadmium, the observed overproduction of glutathione, essential for the detoxification of the metal, can be entirely accounted for by a marked drop in sulfur-containing protein synthesis and a redirection of sulfur metabolite fluxes to the glutathione pathway.

View Article and Find Full Text PDF

We statistically analysed various factors to get accurate estimates of protein quantities from two-dimensional gels. Yeast proteins were labelled with (35)S or stained with Coomassie Brilliant Blue G-250, and spots were automatically quantified with software packages Kepler, ImageQuaNT, Melanie 3.0 and Progenesis.

View Article and Find Full Text PDF

Lithium is highly toxic to yeast when grown in galactose medium mainly because phosphoglucomutase, a key enzyme of galactose metabolism, is inhibited. We studied the global protein and gene expression profiles of Saccharomyces cerevisiae grown in galactose in different time intervals after addition of lithium. These results were related to physiological studies where both secreted and intracellular metabolites were determined.

View Article and Find Full Text PDF

Genome-wide studies have recently revealed the unexpected complexity of the genetic response to apparently simple physiological changes. Here, we show that when yeast cells are exposed to Cd(2+), most of the sulfur assimilated by the cells is converted into glutathione, a thiol-metabolite essential for detoxification. Cells adapt to this vital metabolite requirement by modifying globally their proteome to reduce the production of abundant sulfur-rich proteins.

View Article and Find Full Text PDF

Selenium can provoke contrasting effects on living organisms. It is an essential trace element, and low concentrations have beneficial effects, such as the reduction of the incidence of cancer. However, higher concentrations of selenium salts can be toxic and mutagenic.

View Article and Find Full Text PDF

Yeasts lacking cytoplasmic superoxide dismutase (Cu,Zn-SOD) activity are permanently subjected to oxidative stress. We used two-dimensional PAGE to examine the proteome pattern of Saccharomyces cerevisiae strains lacking Cu,Zn-SOD. We found a new stable form of alkyl hydroperoxide reductase 1 (Ahp1) with a lower isoelectric point.

View Article and Find Full Text PDF