Advances in neuroscience are underpinned by large, multicenter studies and a mass of heterogeneous datasets. When investigating the relationships between brain anatomy and brain functions under normal and pathological conditions, measurements obtained from a broad range of brain imaging techniques are correlated with the information on each subject's neurologic states, cognitive assessments and behavioral scores derived from questionnaires and tests. The development of ontologies in neuroscience appears to be a valuable way of gathering and handling properly these heterogeneous data - particularly through the use of federated architectures.
View Article and Find Full Text PDFAMIA Annu Symp Proc
February 2013
Stud Health Technol Inform
October 2010
Grid technologies are appealing to deal with the challenges raised by computational neurosciences and support multi-centric brain studies. However, core grids middleware hardly cope with the complex neuroimaging data representation and multi-layer data federation needs. Moreover, legacy neuroscience environments need to be preserved and cannot be simply superseded by grid services.
View Article and Find Full Text PDFThe goal of the NeuroBase project is to facilitate collaborative research in neuroimaging through a federated system based on semantic web technologies. The cornerstone and focus of this paper is the design of a common semantic model providing a unified view on all data and tools to be shared. For this purpose, we built a multi-layered and multi-components formal ontology.
View Article and Find Full Text PDF