An increasing number of drug discovery programs concern compounds in the beyond rule of 5 (bRo5) chemical space, such as cyclic peptides, macrocycles, and degraders. Recent results show that common paradigms of property-based drug design need revision to be applied to larger and more flexible compounds. A virtual event entitled "Solubility, permeability and physico-chemical properties in the bRo5 chemical space" was organized to provide preliminary guidance on how to make the discovery of oral drugs in the bRo5 space more effective.
View Article and Find Full Text PDFBeyond rule of 5 (bRo5) molecules are attracting significant interest in modern drug discovery mostly because many novel targets require large and more flexible structures. The main aim of this paper is the identification of ad hoc bRo5 physicochemical descriptors of ionization, lipophilicity, polarity and chameleonicity and their measurement. We used different methods to collect ionization (pK measures and log k'80 PLRP-S trends), lipophilicity (in octanol/water, in apolar systems and in biomimetic environments), polarity (Δlog P, EPSA and Δlog K) and chameleonicity (ChameLogD) descriptors for 26 bRo5 drugs.
View Article and Find Full Text PDFThe present work proposes a novel application of EPSA (not an acronym but found to be referred to by many as Exposed Polar Surface Area), a supercritical fluid chromatography (SFC) polarity readout for assisting in the prediction of the extent of drug permeation through the blood-brain barrier (BBB). For this purpose, EPSA values for 69 structurally unrelated acidic, basic, neutral and amphoteric compounds were determined by a validated SFC method. Additionally, water-accessible surface area (WASA) values for the whole dataset were calculated in silico and compared to experimentally determined EPSA values.
View Article and Find Full Text PDFThe fast and accurate determination of molecular properties is highly desirable for many facets of chemical research, particularly in drug discovery where pre-clinical assays play an important role in paring down large sets of drug candidates. Here, we present the use of supervised machine learning to treat differential mobility spectrometry - mass spectrometry data for ten topological classes of drug candidates. We demonstrate that the gas-phase clustering behavior probed in our experiments can be used to predict the candidates' condensed phase molecular properties, such as cell permeability, solubility, polar surface area, and water/octanol distribution coefficient.
View Article and Find Full Text PDFThe chemokine receptor CXCR7 is an attractive target for a variety of diseases. While several small-molecule modulators of CXCR7 have been reported, peptidic macrocycles may provide advantages in terms of potency, selectivity, and reduced off-target activity. We produced a series of peptidic macrocycles that incorporate an N-linked peptoid functionality where the peptoid group enabled us to explore side-chain diversity well beyond that of natural amino acids.
View Article and Find Full Text PDFThe synthesis and in vivo pharmacokinetic profile of an analogue of cyclosporine is disclosed. An acyclic congener was also profiled in in vitro assays to compare cell permeability. The compounds possess similar calculated and measured molecular descriptors however have different behaviors in an RRCK assay to assess cell permeability.
View Article and Find Full Text PDFEPSA is an experimental descriptor of molecular polarity obtained from chromatographic retention in supercritical fluid chromatography (SFC) systems, previously shown by Goetz et al. to correlate with passive permeability of cyclic peptides. The present study focuses on EPSA in relation to passive permeability of small molecules.
View Article and Find Full Text PDFInducing α-helicity through side-chain cross-linking is a strategy that has been pursued to improve peptide conformational rigidity and bio-availability. Here we describe the preparation of small peptides tethered to chiral sulfoxide-containing macrocyclic rings. Furthermore, a study of structure-activity relationships (SARs) disclosed properties with respect to ring size, sulfur position, oxidation state, and stereochemistry that show a propensity to induce α-helicity.
View Article and Find Full Text PDFOxytocin (OT) is a peptide hormone agonist of the OT receptor (OTR) that plays an important role in social behaviors such as pair bonding, maternal bonding and trust. The pharmaceutical development of OT as an oral peptide therapeutic has been hindered historically by its unfavorable physicochemical properties, including molecular weight, polarity and number of hydrogen bond donors, which determines poor cell permeability. Here we describe the first systematic study of single and multiple N-methylations of OT and their effect on physicochemical properties as well as potency at the OT receptor.
View Article and Find Full Text PDFThis study describes the design and implementation of a new chromatographic descriptor called log k'80 PLRP-S that provides information about the lipophilicity of drug molecules in the nonpolar environment, both in their neutral and ionized form. The log k'80 PLRP-S obtained on a polymeric column with acetonitrile/water mobile phase is shown to closely relate to log Ptoluene (toluene dielectric constant ε ∼ 2). The main intermolecular interactions governing log k'80 PLRP-S were deconvoluted using the Block Relevance (BR) analysis.
View Article and Find Full Text PDFThe effect of peptide-to-peptoid substitutions on the passive membrane permeability of an N-methylated cyclic hexapeptide is examined. In general, substitutions maintained permeability but increased conformational heterogeneity. Diversification with nonproteinogenic side chains increased permeability up to 3-fold.
View Article and Find Full Text PDFMost peptides are generally insufficiently permeable to be used as oral drugs. Designing peptides with improved permeability without reliable permeability monitoring is a challenge. We have developed a supercritical fluid chromatography technique for peptides, termed EPSA, which is shown here to enable improved permeability design.
View Article and Find Full Text PDFIn ongoing studies towards novel hepatitis C virus (HCV) therapeutics, inhibitors of nonstructural protein 5A (NS5A) were evaluated. Specifically, starting from previously reported lead compounds, peripheral substitution patterns of a series of biaryl-linked pyrrolidine NS5A replication complex inhibitors were probed and structure-activity relationships were elucidated. Using molecular modelling and a supercritical fluid chromatographic (SFC) technique, intramolecular H-bonding and peripheral functional group topology were evaluated as key determinants of activity and membrane permeability.
View Article and Find Full Text PDFA supercritical fluid chromatography method was developed for the detection of intramolecular hydrogen bonds in pharmaceutically relevant molecules. The identification of compounds likely to form intramolecular hydrogen bonds is an important drug design consideration given the correlation of intramolecular hydrogen bonding with increased membrane permeability. The technique described here correlates chromatographic retention with the exposed polarity of a molecule.
View Article and Find Full Text PDFDesorption electrospray ionization (DESI) was coupled to an ambient pressure drift tube ion mobility time-of-flight mass spectrometer (IM-TOFMS) for the direct analysis of active ingredients in pharmaceutical samples. The DESI source was also coupled with a standalone IMS demonstrating potential of portable and inexpensive drug-quality testing platforms. The DESI-IMS required no sample pretreatment as ions were generated directly from tablets and cream formulations.
View Article and Find Full Text PDFThis study demonstrates that ΔlogP(oct-tol) (difference between logP(octanol) and logP(toluene)) describes compounds propensity to form intramolecular hydrogen bonds (IMHB) and may be considered a privileged molecular descriptor for use in drug discovery and for prediction of IMHB in drug candidates. We identified experimental protocols for acquiring reliable ΔlogP(oct-tol) values on a set of compounds representing IMHB motifs most prevalent in medicinal chemistry, mainly molecules capable of forming 6-, 7-member IMHB rings. Furthermore, computational ΔlogP(oct-tol) values obtained with COSMO-RS software provided a good estimate of experimental results and can be used prospectively to assess IMHB.
View Article and Find Full Text PDFThe c-MET receptor tyrosine kinase is an attractive oncology target because of its critical role in human oncogenesis and tumor progression. An oxindole hydrazide hit 6 was identified during a c-MET HTS campaign and subsequently demonstrated to have an unusual degree of selectivity against a broad array of other kinases. The cocrystal structure of the related oxindole hydrazide c-MET inhibitor 10 with a nonphosphorylated c-MET kinase domain revealed a unique binding mode associated with the exquisite selectivity profile.
View Article and Find Full Text PDFThe application of conformationally dependent measures of size and polarity to characterize beyond rule-of-5 (Ro5) space for passive permeation was investigated. Specifically, radius of gyration, an alternative to molecular weight, and three-dimensional polar surface area and the generalized Born/surface area dehydration free energy, alternatives to hydrogen-bond donor and acceptor counts, were computed on models of the permeating conformations of over 35 000 molecules. The resulting guidelines for size and polarity, described by the 3D properties, should aid the design of Ro5 violators with passive permeability.
View Article and Find Full Text PDFOn-column solvent exchange, using many of the principles of solid-phase extraction, has been implemented to significantly reduce evaporation cycle time following reverse-phase preparative HPLC. Additional benefits, such as a reduced potential for salt formation, thermal decomposition, and residual solvent, are also described. Fractions obtained from preparative separations, typically in a large volume of acetonitrile:water, are injected into the preparative HPLC and then eluted in acetonitrile, creating a new fraction in a volatile organic solvent.
View Article and Find Full Text PDFFour new sesquiterpene derivatives have been isolated from the aerial parts of Cleome droserifolia. Their structures were established as 6-di(7-hydroxy, 1, 5-epoxy germacrane) (2), 4(15)-guaiane-6-ol (3), 7alpha-germacra-1(10), 4(15)-diene-5beta, 6alpha-diol (4) and 4,7,8-eudesma-triol (5). In addition, a new dolabellane diterpene derivative with the naturally rare peroxy function was identified as methyl ester of 2,18-O-diacetyl-16-O-(3-hydroxy-3-methylglutaryl)-7-hydroperoxydolabella-3,8(17)diene-2,16,18 triol (7).
View Article and Find Full Text PDFComb Chem High Throughput Screen
September 2005
Due to pressure from combinatorial chemistry and the streamlining of the drug discovery process through automated high-throughput screening technologies, pharmaceutically based natural products programs are under increasing scrutiny. However by taking advantages of technologies originally developed for high-throughput screening and combinatorial chemistry and applying them to processes considered as bottlenecks in classical natural products chemistry (purification, structure elucidation, sample availability) it is our opinion that natural products can still contribute to the effective discovery of novel bioactive and pharmaceutically relevant metabolites. We describe here several such strategies that if universally implemented, will demonstrate i) whether chemical diversity is truly being accessed, ii) that novel metabolites can be formatted in a manner appropriate for modern screening paradigms, and iii) that natural products can be rapidly identified not only for novelty and pharmaceutical relevance but to assess their true biological origin.
View Article and Find Full Text PDFThe cytotoxic depsipeptide kulokekahilide-1, which contains two unusual amino acids, 4-phenylvaline and 3-amino-2-methylhexanoic acid, was isolated from the cephalaspidean mollusk Philinopsis speciosa. Structure elucidation of kulokekahilide-1 was carried out by spectroscopic analysis and chemical degradation. The absolute stereochemistry was determined by Marfey analysis for amino acids and chiral HPLC analysis for hydroxy acids.
View Article and Find Full Text PDF