Publications by authors named "Gilles Galopin"

Background: Segmentation of structural parts of 3D models of plants is an important step for plant phenotyping, especially for monitoring architectural and morphological traits. Current state-of-the art approaches rely on hand-crafted 3D local features for modeling geometric variations in plant structures. While recent advancements in deep learning on point clouds have the potential of extracting relevant local and global characteristics, the scarcity of labeled 3D plant data impedes the exploration of this potential.

View Article and Find Full Text PDF

Since most computer vision approaches are now driven by machine learning, the current bottleneck is the annotation of images. This time-consuming task is usually performed manually after the acquisition of images. In this article, we assess the value of various egocentric vision approaches in regard to performing joint acquisition and automatic image annotation rather than the conventional two-step process of acquisition followed by manual annotation.

View Article and Find Full Text PDF

Background: The production and availability of annotated data sets are indispensable for training and evaluation of automatic phenotyping methods. The need for complete 3D models of real plants with organ-level labeling is even more pronounced due to the advances in 3D vision-based phenotyping techniques and the difficulty of full annotation of the intricate 3D plant structure.

Results: We introduce the ROSE-X data set of 11 annotated 3D models of real rosebush plants acquired through X-ray tomography and presented both in volumetric form and as point clouds.

View Article and Find Full Text PDF