Publications by authors named "Gilles Esposito-Farese"

The gravitational wave event GW170817 together with its electromagnetic counterparts constrains the speed of gravity to be extremely close to that of light. We first show, on the example of an exact Schwarzschild-de Sitter solution of a specific beyond-Horndeski theory, that imposing the strict equality of these speeds in the asymptotic homogeneous Universe suffices to guarantee so even in the vicinity of the black hole, where large curvature and scalar-field gradients are present. We also find that the solution is stable in a range of the model parameters.

View Article and Find Full Text PDF

We show that the current bounds on the time variation of the Newton constant G can put severe constraints on many interesting scalar-tensor theories which possess a shift symmetry and a nonminimal matter-scalar coupling. This includes, in particular, Galileon-like models with a Vainshtein screening mechanism. We underline that this mechanism, if efficient to hide the effects of the scalar field at short distance and in the static approximation, can in general not alter the cosmological time evolution of the scalar field.

View Article and Find Full Text PDF

The gravitational radiation from point particle binaries is computed at the third post-Newtonian (3PN) approximation of general relativity. Three previously introduced ambiguity parameters, coming from the Hadamard self-field regularization of the 3PN source-type mass quadrupole moment, are consistently determined by means of dimensional regularization, and proved to have the values xi=-9871/9240, kappa=0, and zeta=-7/33. These results complete the derivation of the general relativistic prediction for compact binary inspiral up to 3.

View Article and Find Full Text PDF