Rewetting peatlands is required to limit carbon dioxide (CO) emissions, however, raising the groundwater level (GWL) will strongly increase the chance of methane (CH) emissions which has a higher radiative forcing than CO. Data sets of CH from different rewetting strategies and natural systems are scarce, and quantification and an understanding of the main drivers of CH emissions are needed to make effective peatland rewetting decisions. We present a large data set of CH fluxes (FCH) measured across 16 sites with eddy covariance on Dutch peatlands.
View Article and Find Full Text PDFDrained peatlands in temperate climates are under threat from climate change and human activities. The resulting decomposition of organic matter plays a major role in regulating the associated land subsidence rates, yet the determinants of aerobic and anaerobic peat decomposition rates are not fully understood. In this study, we sought to gain insight into the drivers of decomposition rates in botanically diverse peatlands (sedge, reed, wood, and moss dominant) under oxic and anoxic conditions.
View Article and Find Full Text PDFAn increasing number of people lives in coastal zones with a subsurface consisting of heterogenic soft-soil sequences. Many of these sequences contain substantial amounts of peat. While population growth and urbanization continues in coastal zones, they are threatened by global sea-level rise and land subsidence.
View Article and Find Full Text PDF