Internet of Things technologies open up new applications for remote monitoring of forests, fields, etc. These networks require autonomous operation: combining ultra-long-range connectivity with low energy consumption. While typical low-power wide-area networks offer long-range characteristics, they fall short in providing coverage for environmental tracking in ultra-remote areas spanning hundreds of square kilometers.
View Article and Find Full Text PDFWireless power transfer provides a most convenient solution to charge devices remotely and without contacts. R&D has advanced the capabilities, variety, and maturity of solutions greatly in recent years. This survey provides a comprehensive overview of the state of the art on different technological concepts, including electromagnetic coupled and uncoupled systems and acoustic technologies.
View Article and Find Full Text PDFLong-range wireless connectivity technologies for sensors and actuators open the door for a variety of new Internet of Things (IoT) applications. These technologies can be deployed to establish new monitoring capabilities and enhance efficiency of services in a rich diversity of domains. Low energy consumption is essential to enable battery-powered IoT nodes with a long autonomy.
View Article and Find Full Text PDFMany commercial platforms for fast prototyping have gained support for lpwan technologies. However, these solutions do not meet the low-cost and low-power requirements for a large-scale distribution of battery-powered sensor nodes. This paper presents the design, realization and validation of an open-source lpwan versatile platform.
View Article and Find Full Text PDF