Objectives: Neuroprosthetic devices can improve quality of life by providing an alternative option for motor function lost after spinal cord injury, stroke, and other central nervous system disorders. The objective of this study is to analyze the outcomes of implanted pulse generators that our research group installed in volunteers with paralysis to assist with lower extremity function over a 25-year period, specifically, to determine survival rates and common modes of malfunction, reasons for removal or revision, and precipitating factors or external events that may have adversely influenced device performance.
Materials And Methods: Our implantable receiver-stimulator (IRS-8) and implantable stimulator-telemeter (IST-12 and IST-16) device histories were retrospectively reviewed through surgical notes, regulatory documentation, and manufacturing records from 1996 to 2021.
Clinical interventions to restore standing or stepping by using nerve cuff stimulation require a detailed knowledge of femoral nerve neuroanatomy. We harvested eight femoral nerves with all distal branches and characterized the branching patterns and diameters. The fascicular representation of each distal nerve was identified and traced proximally to create fascicle maps of the compound femoral nerve in four cadaver specimens.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
April 2010
We have tested the hypothesis that the Flat Interface Nerve Electrode (FINE) can selectively stimulate each muscle innervated by the common femoral nerve of the human, near the inguinal ligament in a series of intraoperative trials. During routine vascular surgeries, an 8-contact FINE was placed around the common femoral nerve between the inguinal ligament and the first branching point. The efficacy of the FINE to selectively recruit muscles innervated by the femoral nerve was determined from electromyograms (EMGs) recorded in response to electrical stimulation.
View Article and Find Full Text PDF