Publications by authors named "Gilles Bonvento"

Advances in gene therapy, especially for brain diseases, have created new imaging demands for noninvasive monitoring of gene expression. While reporter gene imaging using co-expression of fluorescent protein-encoding gene has been widely developed, these conventional methods face significant limitations in longitudinal in vivo applications. Magnetic resonance imaging (MRI), specifically chemical exchange saturation transfer (CEST) MRI, provides a robust noninvasive alternative that offers unlimited depth penetration, reliable spatial resolution, and specificity toward particular molecules.

View Article and Find Full Text PDF

Astrocytes control brain activity via both metabolic processes and gliotransmission, but the physiological links between these functions are scantly known. Here we show that endogenous activation of astrocyte type-1 cannabinoid (CB1) receptors determines a shift of glycolysis towards the lactate-dependent production of D-serine, thereby gating synaptic and cognitive functions in male mice. Mutant mice lacking the CB1 receptor gene in astrocytes (GFAP-CB1-KO) are impaired in novel object recognition (NOR) memory.

View Article and Find Full Text PDF

Tauopathy is a typical feature of Alzheimer's disease of major importance because it strongly correlates with the severity of cognitive deficits experienced by patients. During the pathology, it follows a characteristic spatiotemporal course which takes its origin in the transentorhinal cortex, and then gradually invades the entire forebrain. To study the mechanisms of tauopathy, and test new therapeutic strategies, it is necessary to set-up relevant and versatile in vivo models allowing to recapitulate tauopathy.

View Article and Find Full Text PDF

Recent work from Bonvento and colleagues indicated that synaptic and memory deficits in early Alzheimer's disease (AD) are related to a shortage in L-serine production in astrocytes. Here, the authors, responding to correspondence from Chen and colleagues, discuss how this deficiency does not necessarily require a decrease in PHGDH expression and conclude that the primary event leading to lower serine production is more likely related to altered glycolytic flux in early AD than to PHGDH expression.

View Article and Find Full Text PDF

Huntington's disease is a fatal neurodegenerative disease characterized by striatal neurodegeneration, aggregation of mutant Huntingtin and the presence of reactive astrocytes. Astrocytes are important partners for neurons and engage in a specific reactive response in Huntington's disease that involves morphological, molecular and functional changes. How reactive astrocytes contribute to Huntington's disease is still an open question, especially because their reactive state is poorly reproduced in experimental mouse models.

View Article and Find Full Text PDF

The brain has almost no energy reserve, but its activity coordinates organismal function, a burden that requires precise coupling between neurotransmission and energy metabolism. Deciphering how the brain accomplishes this complex task is crucial to understand central facets of human physiology and disease mechanisms. Each type of neural cell displays a peculiar metabolic signature, forcing the intercellular exchange of metabolites that serve as both energy precursors and paracrine signals.

View Article and Find Full Text PDF

Alpha-synuclein (α-syn) and leucine-rich repeat kinase 2 (LRRK2) play crucial roles in Parkinson's disease (PD). They may functionally interact to induce the degeneration of dopaminergic (DA) neurons via mechanisms that are not yet fully understood. We previously showed that the C-terminal portion of LRRK2 (ΔLRRK2) with the G2019S mutation (ΔLRRK2) was sufficient to induce neurodegeneration of DA neurons in vivo, suggesting that mutated LRRK2 induces neurotoxicity through mechanisms that are (i) independent of the N-terminal domains and (ii) "cell-autonomous".

View Article and Find Full Text PDF

The role played by microglia has taken the center of the stage in the etiology of Alzheimer's disease (AD). Several genome-wide association studies carried out on large cohorts of patients have indeed revealed a large number of genetic susceptibility factors corresponding to genes involved in neuroinflammation and expressed specifically by microglia in the brain. Among these genes TREM2, a cell surface receptor expressed by microglia, arouses strong interest because its R47H variant confers a risk of developing AD comparable to the ε4 allele of the APOE gene.

View Article and Find Full Text PDF

Deposits of different abnormal forms of tau in neurons and astrocytes represent key anatomo-pathological features of tauopathies. Although tau protein is highly enriched in neurons and poorly expressed by astrocytes, the origin of astrocytic tau is still elusive. Here, we used innovative gene transfer tools to model tauopathies in adult mouse brains and to investigate the origin of astrocytic tau.

View Article and Find Full Text PDF

Reactive astrocytes are astrocytes undergoing morphological, molecular, and functional remodeling in response to injury, disease, or infection of the CNS. Although this remodeling was first described over a century ago, uncertainties and controversies remain regarding the contribution of reactive astrocytes to CNS diseases, repair, and aging. It is also unclear whether fixed categories of reactive astrocytes exist and, if so, how to identify them.

View Article and Find Full Text PDF
Article Synopsis
  • Astrocytes are crucial for linking neural activity with blood flow, but they can become reactive and dysfunctional in response to brain metastasis, leading to impaired cerebrovascular function.
  • Research aimed at understanding how STAT3, a regulator of astrocyte reactivity, affects neurovascular function showed that reactive astrocytes impair blood flow responses and disrupt interactions with blood vessels in both animal models and human samples.
  • Inhibiting STAT3 in astrocytes restored cerebrovascular function in rats with brain metastasis, indicating a potential therapeutic strategy to improve neurological outcomes in patients with brain tumors.
View Article and Find Full Text PDF

Brain energy metabolism is often considered as a succession of biochemical steps that metabolize the fuel (glucose and oxygen) for the unique purpose of providing sufficient ATP to maintain the huge information processing power of the brain. However, a significant fraction (10-15 %) of glucose is shunted away from the ATP-producing pathway (oxidative phosphorylation) and may be used to support other functions. Recent studies have pointed to the marked compartmentation of energy metabolic pathways between neurons and glial cells.

View Article and Find Full Text PDF

Astrocytes take up glucose from the bloodstream to provide energy to the brain, thereby allowing neuronal activity and behavioural responses. By contrast, astrocytes are under neuronal control through specific neurotransmitter receptors. However, whether the activation of astroglial receptors can directly regulate cellular glucose metabolism to eventually modulate behavioural responses is unclear.

View Article and Find Full Text PDF

Protoplasmic astrocytes (PrA) located in the mouse cerebral cortex are tightly juxtaposed, forming an apparently continuous three-dimensional matrix at adult stages. Thus far, no immunostaining strategy can single them out and segment their morphology in mature animals and over the course of corticogenesis. Cortical PrA originate from progenitors located in the dorsal pallium and can easily be targeted using in utero electroporation of integrative vectors.

View Article and Find Full Text PDF

In Alzheimer disease (AD), astrocytes undergo complex changes and become reactive. The consequences of this reaction are still unclear. To evaluate the net impact of reactive astrocytes in AD, we developed viral vectors targeting astrocytes that either activate or inhibit the Janus kinase-signal transducer and activator of transcription 3 (JAK2-STAT3) pathway, a central cascade controlling astrocyte reaction.

View Article and Find Full Text PDF

Alteration of brain aerobic glycolysis is often observed early in the course of Alzheimer's disease (AD). Whether and how such metabolic dysregulation contributes to both synaptic plasticity and behavioral deficits in AD is not known. Here, we show that the astrocytic l-serine biosynthesis pathway, which branches from glycolysis, is impaired in young AD mice and in AD patients.

View Article and Find Full Text PDF

The Morris Water Maze (MWM) is a behavioral test widely used in the field of neuroscience to evaluate spatial learning memory of rodents. However, the interpretation of results is often impaired by the common use of statistical tests based on independence and normal distributions that do not reflect basic properties of the test data, such as the constant-sum constraint. In this work, we propose to analyze MWM data with the Dirichlet distribution, which describes constant-sum data with minimal hypotheses, and we introduce a statistical test based on uniformity (equal amount of time spent in each quadrant of the maze) that evaluates memory impairments.

View Article and Find Full Text PDF

Astrocytes play essential roles in the neural tissue where they form a continuous network, while displaying important local heterogeneity. Here, we performed multiclonal lineage tracing using combinatorial genetic markers together with a new large volume color imaging approach to study astrocyte development in the mouse cortex. We show that cortical astrocyte clones intermix with their neighbors and display extensive variability in terms of spatial organization, number and subtypes of cells generated.

View Article and Find Full Text PDF

The G2019S substitution in the kinase domain of LRRK2 (LRRK2) is the most prevalent mutation associated with Parkinson's disease (PD). Neurotoxic effects of LRRK2 are thought to result from an increase in its kinase activity as compared to wild type LRRK2. However, it is unclear whether the kinase domain of LRRK2 is sufficient to trigger degeneration or if the full length protein is required.

View Article and Find Full Text PDF

The 18 kDa translocator protein (TSPO) is the main molecular target to image neuroinflammation by positron emission tomography (PET). However, TSPO-PET quantification is complex and none of the kinetic modelling approaches has been validated using a voxel-by-voxel comparison of TSPO-PET data with the actual TSPO levels of expression. Here, we present a single case study of binary classification of in vivo PET data to evaluate the statistical performance of different TSPO-PET quantification methods.

View Article and Find Full Text PDF

Reactive astrocytes exhibit hypertrophic morphology and altered metabolism. Deciphering astrocytic status would be of great importance to understand their role and dysregulation in pathologies, but most analytical methods remain highly invasive or destructive. The diffusion of brain metabolites, as non-invasively measured using diffusion-weighted magnetic resonance spectroscopy (DW-MRS) in vivo, depends on the structure of their micro-environment.

View Article and Find Full Text PDF

To satisfy its high energetic demand, the brain depends on the metabolic cooperation of various cell types. For example, astrocytic-derived lactate sustains memory consolidation by serving both as an oxidizable energetic substrate for neurons and as a signalling molecule. Astrocytes and neurons also differ in the regulation of glycolytic enzymes and in the organization of their mitochondrial respiratory chain.

View Article and Find Full Text PDF

Astrocyte reactivity and neuroinflammation are hallmarks of CNS pathological conditions such as Alzheimer's disease. However, the specific role of reactive astrocytes is still debated. This controversy may stem from the fact that most strategies used to modulate astrocyte reactivity and explore its contribution to disease outcomes have only limited specificity.

View Article and Find Full Text PDF

The impairment of cerebral glucose utilization is an early and predictive biomarker of Alzheimer's disease (AD) that is likely to contribute to memory and cognition disorders during the progression of the pathology. Yet, the cellular and molecular mechanisms underlying these metabolic alterations remain poorly understood. Here we studied the glucose metabolism of supragranular pyramidal cells at an early presymptomatic developmental stage in non-transgenic (non-Tg) and 3xTg-AD mice, a mouse model of AD replicating numerous hallmarks of the disease.

View Article and Find Full Text PDF

The neurobiological functions of a number of kinases expressed in the brain are unknown. Here, we report new findings on DCLK3 (doublecortin like kinase 3), which is preferentially expressed in neurons in the striatum and dentate gyrus. Its function has never been investigated.

View Article and Find Full Text PDF