Background: Colonization of large part of Europe by the Asian tiger mosquito Aedes albopictus is causing autochthonous transmission of chikungunya and dengue exotic arboviruses. While pyrethroids are recommended only to reduce/limit transmission, they are widely implemented to reduce biting nuisance and to control agricultural pests, increasing the risk of insurgence of resistance mechanisms. Worryingly, pyrethroid resistance (with mortality < 70%) was recently reported in Ae.
View Article and Find Full Text PDFEnvironmental features impacting the spread of invasive species after introduction can be assessed using population genetic structure as a quantitative estimation of effective dispersal at the landscape scale. However, in the case of an ongoing biological invasion, deciphering whether genetic structure represents landscape connectivity or founder effects is particularly challenging. We examined the modes of dispersal (natural and human-aided) and the factors (landscape or founders history) shaping genetic structure in range edge invasive populations of the Asian tiger mosquito, Aedes albopictus, in the region of Grenoble (Southeast France).
View Article and Find Full Text PDFInvasion of new territories by insect vector species that can transmit pathogens is one of the most important threats for human health. The spread of the mosquito Aedes albopictus in Europe is emblematic, because of its major role in the emergence and transmission of arboviruses such as dengue or chikungunya. Here, we modeled the spread of this mosquito species in France through a statistical framework taking advantage of a long-term surveillance dataset going back to the first observation of Ae.
View Article and Find Full Text PDFSprays of commercial preparations of the bacterium Bacillus thuringiensis subsp. israelensis are widely used for the control of mosquito larvae. Despite an abundant literature on B.
View Article and Find Full Text PDF