Publications by authors named "Gilleron J"

Article Synopsis
  • Monocytes play a crucial role in atherosclerosis by turning into macrophages when they migrate to plaques, and this study explores how their glucose metabolism influences their behavior and contribution to the disease.
  • Researchers found that higher serum glucose levels are linked to increased monocyte numbers, while restricted diets hinder monocytes from switching energy sources, which reduces their presence in the blood.
  • The study highlights that glucose metabolism is vital for maintaining specific monocyte characteristics and functions, but inhibiting glucose uptake alone doesn't prevent atherosclerosis, likely because the remaining monocytes become more migratory.
View Article and Find Full Text PDF

The prevalence of diabetes steadily increases worldwide mirroring the prevalence of obesity. Endoplasmic reticulum (ER) stress is activated in diabetes and contributes to β-cell dysfunction and apoptosis through the activation of a terminal unfolded protein response (UPR). Our results uncover a new role for Bax Inhibitor-One (BI-1), a negative regulator of inositol-requiring enzyme 1 (IRE1α) in preserving β-cell health against terminal UPR-induced apoptosis and pyroptosis in the context of supraphysiological loads of insulin production.

View Article and Find Full Text PDF

Background: The trafficking of cargoes from endosomes to the trans-Golgi network requires numerous sequential and coordinated steps. Cargoes are sorted into endosomal-derived carriers that are transported, tethered, and fused to the trans-Golgi network. The tethering step requires several complexes, including the Golgi-associated retrograde protein complex, whose localization at the trans-Golgi network is determined by the activity of small GTPases of the Arl and Rab family.

View Article and Find Full Text PDF

In humans, glucocorticoids (GCs) are commonly prescribed because of their anti-inflammatory and immunosuppressive properties. However, high doses of GCs often lead to side effects, including diabetes and lipodystrophy. We recently reported that adipocyte glucocorticoid receptor (GR)-deficient (AdipoGR-KO) mice under corticosterone (CORT) treatment exhibited a massive adipose tissue (AT) expansion associated with a paradoxical improvement of metabolic health compared with control mice.

View Article and Find Full Text PDF

Extracellular matrix (ECM) elasticity is perceived by cells via focal adhesion structures, which transduce mechanical cues into chemical signalling to conform cell behavior. Although the contribution of ECM compliance to the control of cell migration or division is extensively studied, little is reported regarding infectious processes. We study this phenomenon with the extraintestinal Escherichia coli pathogen UTI89.

View Article and Find Full Text PDF

The global prevalences of obesity and type 2 diabetes mellitus have reached epidemic status, presenting a heavy burden on society. It is therefore essential to find novel mechanisms and targets that could be utilized in potential treatment strategies and, as such, intracellular membrane trafficking has re-emerged as a regulatory tool for controlling metabolic homeostasis. Membrane trafficking is an essential physiological process that is responsible for the sorting and distribution of signalling receptors, membrane transporters and hormones or other ligands between different intracellular compartments and the plasma membrane.

View Article and Find Full Text PDF

Despite the ubiquitous function of macrophages across the body, the diversity, origin, and function of adrenal gland macrophages remain largely unknown. We define the heterogeneity of adrenal gland immune cells using single-cell RNA sequencing and use genetic models to explore the developmental mechanisms yielding macrophage diversity. We define populations of monocyte-derived and embryonically seeded adrenal gland macrophages and identify a female-specific subset with low major histocompatibility complex (MHC) class II expression.

View Article and Find Full Text PDF

White adipose tissue accumulates at various sites throughout the body, some adipose tissue depots exist near organs whose function they influence in a paracrine manner. Prostate gland is surrounded by a poorly characterized adipose depot called periprostatic adipose tissue (PPAT), which plays emerging roles in prostate-related disorders. Unlike all other adipose depots, PPAT secretes proinflammatory cytokines even in lean individuals and does not increase in volume during obesity.

View Article and Find Full Text PDF

Monocytes are part of the mononuclear phagocytic system. Monocytes play a central role during inflammatory conditions and a better understanding of their dynamics might open therapeutic opportunities. In the present study, we focused on the characterization and impact of monocytes on brown adipose tissue (BAT) functions during tissue remodeling.

View Article and Find Full Text PDF

Alteration of adipocyte function contributes to the pathogenesis of metabolic diseases including Type 2 diabetes and insulin resistance. This highlights the need to better understand the molecular mechanism involved in adipocyte dysfunction to develop new therapies against obesity-related diseases. Modulating the expression of proteins and micro-RNAs in adipocytes remains highly challenging.

View Article and Find Full Text PDF

To adapt in an ever-changing environment, cells must integrate physical and chemical signals and translate them into biological meaningful information through complex signaling pathways. By combining lipidomic and proteomic approaches with functional analysis, we have shown that ubiquitin domain-containing protein 1 (UBTD1) plays a crucial role in both the epidermal growth factor receptor (EGFR) self-phosphorylation and its lysosomal degradation. On the one hand, by modulating the cellular level of ceramides through N-acylsphingosine amidohydrolase 1 (ASAH1) ubiquitination, UBTD1 controls the ligand-independent phosphorylation of EGFR.

View Article and Find Full Text PDF
Article Synopsis
  • Obesity is increasing globally, and recent research highlights that fathers with poor diets can negatively impact their offspring's metabolic health.
  • A study using mice demonstrated that multiple generations of fathers fed a Western diet led to increased fat mass and metabolic issues in their descendants, even when those offspring were fed a healthier diet.
  • Interestingly, while these offspring developed an 'overweight' phenotype without certain metabolic diseases, sperm RNA injection studies indicate that while sperm RNA can trigger epigenetic changes related to metabolism, it does not sustain those changes over the long term.
View Article and Find Full Text PDF

Lymphatic collecting vessels and lymph nodes are inevitably embedded in adipose tissue. The physiological significance of this observation remains still not elucidated. However, obesity is characterized by impaired lymphatic function and increased vessel permeability.

View Article and Find Full Text PDF

Obesity is a major worldwide public health issue that increases the risk to develop cardiovascular diseases, type-2 diabetes, and liver diseases. Obesity is characterized by an increase in adipose tissue (AT) mass due to adipocyte hyperplasia and/or hypertrophia, leading to profound remodeling of its three-dimensional structure. Indeed, the maximal capacity of AT to expand during obesity is pivotal to the development of obesity-associated pathologies.

View Article and Find Full Text PDF

Non-alcoholic fatty liver disease (NAFLD) represents a key feature of obesity-related type 2 diabetes with increasing prevalence worldwide. To our knowledge, no treatment options are available to date, paving the way for more severe liver damage, including cirrhosis and hepatocellular carcinoma. Here, we show an unexpected function for an intracellular trafficking regulator, the small Rab GTPase Rab24, in mitochondrial fission and activation, which has an immediate impact on hepatic and systemic energy homeostasis.

View Article and Find Full Text PDF

Nonalcoholic fatty liver disease is a chronic liver disease which is associated with obesity and insulin resistance. We investigated the implication of REDD1 (Regulated in development and DNA damage response-1), a stress-induced protein in the development of hepatic steatosis. REDD1 expression was increased in the liver of obese mice and morbidly obese patients, and its expression correlated with hepatic steatosis and insulin resistance in obese patients.

View Article and Find Full Text PDF

The endosomal system plays an essential role in cell homeostasis by controlling cellular signaling, nutrient sensing, cell polarity and cell migration. However, its place in the regulation of tissue, organ and whole body physiology is less well understood. Recent studies have revealed an important role for the endosomal system in regulating glucose and lipid homeostasis, with implications for metabolic disorders such as type 2 diabetes, hypercholesterolemia and non-alcoholic fatty liver disease.

View Article and Find Full Text PDF

Obesity modifies T cell populations in adipose tissue, thereby contributing to adipose tissue inflammation and insulin resistance. Here, we show that Rab4b, a small GTPase governing endocytic trafficking, is pivotal in T cells for the development of these pathological events. Rab4b expression is decreased in adipose T cells from mice and patients with obesity.

View Article and Find Full Text PDF

Folliculogenesis requires communication between granulosa cells and oocytes, mediated by connexin-based gap junctions. Connexin 37 (Cx37)-deficient female mice are infertile. The present study assessed Cx37 deficiency in patients with primary ovarian insufficiency (POI).

View Article and Find Full Text PDF

The endosomal protein-sorting machineries play vital roles in diverse physiologically important cellular processes. Much of the core membrane-sorting apparatus is conserved in evolution, such as retromer, which is involved in the recycling of a diverse set of cargoes via the retrograde trafficking route. Here, in an RNAi-based loss-of-function study, we identified that suppression of SNX12 leads to a severe blockage in CIM6PR (also known as IGF2R) transport and alters the morphology of the endocytic compartments.

View Article and Find Full Text PDF

Mitochondrial integrity is critical for the regulation of cellular energy and apoptosis. Metformin is an energy disruptor targeting complex I of the respiratory chain. We demonstrate that metformin induces endoplasmic reticulum (ER) stress, calcium release from the ER and subsequent uptake of calcium into the mitochondria, thus leading to mitochondrial swelling.

View Article and Find Full Text PDF

Cell death is a fundamental process for organogenesis, immunity and cell renewal. During the last decades a broad range of molecular tools were identified as important players for several different cell death pathways (apoptosis, pyroptosis, necrosis, autosis…). Aside from these direct regulators of cell death programs, several lines of evidence proposed connexins and pannexins as potent effectors of cell death.

View Article and Find Full Text PDF

It has been shown that non-cytotoxic doses of Carbendazim (CBZ), a broad-spectrum benzimidazole fungicide, possess endocrine-disrupting (androgen-like) actions, ex vivo, on the pubertal rat seminiferous epithelium. Iprodione (IPR), a dicarboximide fungicide, is also known to be an endocrine-disrupter (anti-androgen). The effect of a mixture of these two pesticides was investigated in the validated rat seminiferous tubule culture model.

View Article and Find Full Text PDF