In recent years, the progression of stem cell therapies has shown great promise in advancing the nascent field of regenerative medicine. Considering the non-regenerative nature of the mature central nervous system, the concept that "blank" cells could be reprogrammed and functionally integrated into host neural networks remained intriguing. Previous work has also demonstrated the ability of such cells to stimulate intrinsic growth programs in post-mitotic cells, such as neurons.
View Article and Find Full Text PDFSynthetic nerve guidance conduits (NGCs) offer an alternative to harvested nerve grafts for treating peripheral nerve injury (PNI). NGCs have been made from both naturally derived and synthesized materials. While naturally derived materials typically have an increased capacity for bioactivity, synthesized materials have better material control, including tunability and reproducibility.
View Article and Find Full Text PDFExp Neurol
August 2020
Large peripheral nerve (PN) defects require bridging substrates to restore tissue continuity and permit the regrowth of sensory and motor axons. We previously showed that cell-free PN segments repopulated ex vivo with Schwann cells (SCs) transduced with lentiviral vectors (LV) to express different growth factors (BDNF, CNTF or NT-3) supported the regeneration of axons across a 1 cm peroneal nerve defect (Godinho et al., 2013).
View Article and Find Full Text PDFTransplantation of patient-derived Schwann cells is a promising regenerative medicine therapy for spinal cord injuries; however, therapeutic efficacy is compromised by inefficient cell delivery. We present a materials-based strategy that addresses three common causes of transplanted cell death: (i) membrane damage during injection, (ii) cell leakage from the injection site, and (iii) apoptosis due to loss of endogenous matrix. Using protein engineering and peptide-based assembly, we designed injectable hydrogels with modular cell-adhesive and mechanical properties.
View Article and Find Full Text PDFCurr Opin Neurobiol
December 2018
Proprioceptive sensory input and descending supraspinal projections are two major inputs that feed into and influence spinal circuitry and locomotor behaviors. Here we review their influence on each other during development and after spinal cord injury. We highlight developmental mechanisms of circuit formation as they relate to the sensory-motor circuit and its reciprocal interactions with local spinal interneurons, as well as competitive interactions between proprioceptive and descending supraspinal inputs in the setting of spinal cord injury.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2018
In the adult mouse spinal cord, the ependymal cell population that surrounds the central canal is thought to be a promising source of quiescent stem cells to treat spinal cord injury. Relatively little is known about the cellular origin of ependymal cells during spinal cord development, or the molecular mechanisms that regulate ependymal cells during adult homeostasis. Using genetic lineage tracing based on the Wnt target gene , we have characterized Wnt-responsive cells during spinal cord development.
View Article and Find Full Text PDFSchwann cells are the primary inducers of regeneration of the peripheral nervous system. Schwann cells can be isolated from adult peripheral nerves, expanded in large numbers, and genetically transduced by viral vectors in vitro prior to their use in vivo. Here we describe how to use lentiviral vectors to transduce primary Schwann cells in vitro.
View Article and Find Full Text PDFBiomaterials can be utilized to assist in the transplantation of Schwann cells to the central and peripheral nervous system. The biomaterials can be natural or man-made, and can have preformed shapes or injectable formats. Biomaterials can play multiple roles in cellular transplantation; for example, they can assist with cellular integration and protect Schwann cells from cell death initiated by the lack of a substrate, an occurrence known as "anoikis.
View Article and Find Full Text PDFAngiogenesis plays a critical role in wound healing after spinal cord injury. Therefore, understanding the events that regulate angiogenesis has considerable relevance from a therapeutic standpoint. We evaluated the contribution of matrix metalloproteinase (MMP)-2 to angiogenesis and vascular stability in spinal cord injured MMP-2 knockout and wildtype (WT) littermates.
View Article and Find Full Text PDFCervical-level injuries account for the majority of presented spinal cord injuries (SCIs) to date. Despite the increase in survival rates due to emergency medicine improvements, overall quality of life remains poor, with patients facing variable deficits in respiratory and motor function. Therapies aiming to ameliorate symptoms and restore function, even partially, are urgently needed.
View Article and Find Full Text PDFCellular transplantation strategies utilizing intraspinal injection of mesenchymal progenitor cells (MPCs) have been reported as beneficial for spinal cord injuries. However, intraspinal injection is not only technically challenging, but requires invasive surgical procedures for patients. Therefore, we investigated the feasibility and potential benefits of noninvasive intravenous injection of MPCs in two models of cervical spinal cord injury, unilateral C5 contusion and complete unilateral C5 hemisection.
View Article and Find Full Text PDFNumerous studies have demonstrated that Schwann cells (SCs) play a role in nerve regeneration; however, their role in innervating a bioceramic scaffold for potential application in bone regeneration is still unknown. Here we report the cell growth and functional behavior of SCs on β-tricalcium phosphate (β-TCP) scaffolds arranged in 3D printed-lattice (P-β-TCP) and randomly-porous, template-casted (N-β-TCP) structures. Our results indicate that SCs proliferated well and expressed the phenotypic markers p75LNGFR and the S100-β subunit of SCs as well as displayed growth morphology on both scaffolds, but SCs showed spindle-shaped morphology with a significant degree of SCs alignment on the P-β-TCP scaffolds, seen to a lesser degree in the N-β-TCP scaffold.
View Article and Find Full Text PDFBackground: The presence, characteristics, and potential clinical relevance of neural progenitor populations within the neural placodes of myelomeningocele patients remain to be studied. Neural stem cells are known to reside adjacent to ependyma-lined surfaces along the central nervous system axis.
Objective: Given such neuroanatomic correlation and regenerative capacity in fetal development, we assessed myelomeningocele-derived neural placode tissue as a potentially novel source of neural stem and progenitor cells.
Large animal and primate models of spinal cord injury (SCI) are being increasingly utilized for the testing of novel therapies. While these represent intermediary animal species between rodents and humans and offer the opportunity to pose unique research questions prior to clinical trials, the role that such large animal and primate models should play in the translational pipeline is unclear. In this initiative we engaged members of the SCI research community in a questionnaire and round-table focus group discussion around the use of such models.
View Article and Find Full Text PDFThe use of programmed electrical signals to influence biological events has been a widely accepted clinical methodology for neurostimulation. An optimal biocompatible platform for neural activation efficiently transfers electrical signals across the electrode-cell interface and also incorporates large-area neural guidance conduits. Inherently conducting polymers (ICPs) have emerged as frontrunners as soft biocompatible alternatives to traditionally used metal electrodes, which are highly invasive and elicit tissue damage over long-term implantation.
View Article and Find Full Text PDFBackground: Members of the Semaphorin 3 family (Sema3s) influence the development of the central nervous system, and some are implicated in regulating aspects of visual system development. However, we lack information about the timing of expression of the Sema3s with respect to different developmental epochs in the mammalian visual system. In this time-course study in the rat, we document for the first time changes in the expression of RNAs for the majority of Class 3 Semaphorins (Sema3s) and their receptor components during the development of the rat retina and superior colliculus (SC).
View Article and Find Full Text PDFBackground: It has been shown that olfactory ensheathing glia (OEG) and Schwann cell (SCs) transplantation are beneficial as cellular treatments for spinal cord injury (SCI), especially acute and sub-acute time points. In this study, we transplanted DsRED transduced adult OEG and SCs sub-acutely (14 days) following a T10 moderate spinal cord contusion injury in the rat. Behaviour was measured by open field (BBB) and horizontal ladder walking tests to ascertain improvements in locomotor function.
View Article and Find Full Text PDFWe used morphological, immunohistochemical and functional assessments to determine the impact of genetically-modified peripheral nerve (PN) grafts on axonal regeneration after injury. Grafts were assembled from acellular nerve sheaths repopulated ex vivo with Schwann cells (SCs) modified to express brain-derived neurotrophic factor (BDNF), a secretable form of ciliary neurotrophic factor (CNTF), or neurotrophin-3 (NT3). Grafts were used to repair unilateral 1 cm defects in rat peroneal nerves and 10 weeks later outcomes were compared to normal nerves and various controls: autografts, acellular grafts and grafts with unmodified SCs.
View Article and Find Full Text PDFThis study assessed the potential of highly purified (Stro-1(+)) human mesenchymal precursor cells (hMPCs) in combination with the anti-scarring protein decorin to repair the injured spinal cord (SC). Donor hMPCs isolated from spinal cord injury (SCI) patients were transplanted into athymic rats as a suspension graft, alone or after previous treatment with, core (decorin(core)) and proteoglycan (decorin(pro)) isoforms of purified human recombinant decorin. Decorin was delivered via mini-osmotic pumps for 14 days following sub-acute (7 day) or chronic (1 month) SCI.
View Article and Find Full Text PDFThe self-assembly of nanoparticles is an efficient and precise method to fabricate nanoscale devices. By manipulating iron oxide nanoparticles in suspension with an external field to form magnetically directed linear assemblies, we demonstrate the feasibility of using this structure to template the synthesis of PEDOT:PSS conducting polymer nanowires in suspension. Furthermore these conducting wires can be assembled on interdigitated electrodes to form an array of conducting nanowires.
View Article and Find Full Text PDFPurpose: Increasing interest in the role of Class 3 Semaphorins (Sema3s) in plasticity and repair in the injured mammalian central nervous system prompted us to characterize changes in Sema3 expression after optic nerve (ON) injury.
Methods: We used unilateral ON transection (ONT) and ON crush (ONC) models in conjunction with quantitative polymerase chain reaction (qPCR), and in situ hybridization (ISH) to characterize postinjury changes in the expression of the Sema3s and their receptors in the rat retina, optic nerve, and superior colliculus (SC).
Results: We observed no changes in mRNA expression in axotomized retinas at 1 or 14 days after ONT, but there was a transient increase for Sema3b, Sema3f, L1cam, and Plxna3 at 3 days postinjury.
Transplanted olfactory ensheathing cells (OECs) contribute to functional recovery in a range of CNS injuries by several mechanisms, one of which is potentially their ability to form myelin sheaths. OECs sourced from donors of different ages have been shown to remyelinate in several in vitro and in vivo models. However, the optimal donor age for OEC associated remyelination is unclear.
View Article and Find Full Text PDFThis study aimed to determine the potential of purified (Stro-1(+)) human mesenchymal precursor cells (hMPCs) to repair the injured spinal cord (SC) after transplantation into T-cell-deficient athymic RNU nude rats following acute moderate contusive spinal cord injury (SCI). hMPCs were isolated from the bone marrow (BM) stroma of SCI patients and transplanted as a suspension graft in medium [with or without immunosuppression using cyclosporin A (CsA)]. Extensive anatomical analysis shows statistically significant improvement in functional recovery, tissue sparing, and cyst reduction.
View Article and Find Full Text PDFTransplantation therapies aimed at repairing neurodegenerative and neuropathological conditions of the central nervous system (CNS) have utilized and tested a variety of cell candidates, each with its own unique set of advantages and disadvantages. The use and popularity of each cell type is guided by a number of factors including the nature of the experimental model, neuroprotection capacity, the ability to promote plasticity and guided axonal growth, and the cells' myelination capability. The promise of stem cells, with their reported ability to give rise to neuronal lineages to replace lost endogenous cells and myelin, integrate into host tissue, restore functional connectivity, and provide trophic support to enhance and direct intrinsic regenerative ability, has been seen as a most encouraging step forward.
View Article and Find Full Text PDFThe visual system is widely used as a model in which to study neurotrauma of the central nervous system and to assess the effects of experimental therapies. Adult mammalian retinal ganglion cell axons do not normally regenerate their axons for long distances following injury. Trauma to the visual system, particularly damage to the optic nerve or central visual tracts, causes loss of electrical communication between the retina and visual processing areas in the brain.
View Article and Find Full Text PDF